因为本人目前正在学习python,其中有一个叫numba的库,使用了llvm,我也不是很了解,但是看起来好像很牛B的样子,听说效率很高。所以我看了一些它的文档,按照官方提供的例子试了一遍:
pythonfrom numba import jit
from numpy import arange
from datetime import datetime
# jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function is called.
@jit
def sum2d(arr):
M, N = arr.shape
result = 0.0
for i in range(M):
for j in range(N):
result += arr[i,j]
return result
a = arange(9).reshape(3,3)
start = datetime.now()
print(sum2d(a))
stop = datetime.now()
print(stop-start)
发现它平均需要花费53毫秒的时间,然后我将@jit注释掉,发现居然连1毫秒都不到,不是说numba效率很高吗?我想不出意外的话,肯定是我哪里弄错了,然后我试了好久,发现如果我把数组变得很大的话,numba的效率就体现了出来:
pythonfrom numba import jit
from numpy import arange
from datetime import datetime
# jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function is called.
@jit
def sum2d(arr):
M, N = arr.shape
result = 0.0
for i in range(M):
for j in range(N):
result += arr[i,j]
return result
a = arange(9999999).reshape(3333333,3)
start = datetime.now()
print(sum2d(a))
stop = datetime.now()
print(stop-start)
不使用jit需要2.56秒的时间,而使用了jit才70毫秒,这已经不是同一个数量级了,但是对于一些简单的计算使用jit反而慢了呢?
JIT是有代码预热的,同样的代码跑的次数多才能看出来优势的。
玩蛇网文章,转载请注明出处和文章网址:https://www.iplaypy.com/wenda/wd18981.html
相关文章 Recommend