计算机应用中的A对应数字几,计算机中常用的十六进制是一种逢进的计数制,采用数字0到9和字母A到F共个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制01234567十进制01234567十六...

一、题文

计算机中常用的十六进制是一种逢

85bd933103b0ce6d5be60cf2f18c9c46.png

0494b8b16ffc98249f3803182c790d9e.png的计数制,采用数字0到9和字母A到F共

85bd933103b0ce6d5be60cf2f18c9c46.png个计数符号,这些符号与十进制的数字的对应关系如下表:

十六进制01234567

十进制01234567

十六进制89ABCDEF

十进制89101112131415例如,用十六进制表示

b88d82425bc94358dcaf35c726233286.png,用十进制表示也就是13+14=1×16+11。则

29d0fff920b46e9a2be683dc6279ae27.png用十六进制表示应为  

A

6ce07e1e3319a08830a221643c06c5ec.png       B 

55bde23437efc110b8cf45f4e3f82e44.png      C 

b7395b3da22082741399efbcb9d04d4c.png      D 

49539f293a380b3a40d7313af5e843f3.png

考点提示:有理数定义及分类,正数与负数,数轴,相反数

二、答案

A试题分析:根据题意,

29d0fff920b46e9a2be683dc6279ae27.png用十进制表示=

5ad6c50f855ad409998e86bcaf9dcd88.png;用十六进制表示应为  

3ab7b9323cadb65de704746752bd1919.png

点评:本题考查十六进制,对十六进制和十进制的概念的掌握是解本题的关键,属创新题

三、考点梳理

知名教师分析,《计算机中常用的十六进制是一种逢进的计数制,采用数字0到9和字母A到F共个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制01234567十进制01234567十六进制89ABCD》这道题主要考你对

关于这些知识点的“解析掌握知识”如下:

知识点名称:有理数定义及分类,正数与负数,数轴,相反数

考点名称:有理数定义及分类有理数的定义:

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

有理数的分类:(1)按有理数的定义:

正整数

整数{     零

负整数

有理数{

正分数

分数{

负分数

(2)按有理数的性质分类:

正整数

正数{

正分数

有理数{  零

负整数

负数{

负分数考点名称:正数与负数正数:就是大于0的(实数)

负数:

就是小于0的(实数)

0既不是正数也不是负数。

非负数:正数与零的统称。

非正数:负数与零的统称。

正负数的认识:

1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。

例如:-a一定是负数吗?

答案是不一定,因为字母a可以表示任意的数。

若a表示正数时,-a是负数;

当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;

当a表示负数时,-a就不是负数了,它是一个正数。

2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,

如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

3.数细分有五类:正整数、正分数、0、负整数、负分数;

但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;

负整数和0统称为非正整数。考点名称:数轴数轴定义:

规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。

数轴具有三要素:

原点、正方向和单位长度,三者缺一不可。

数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

用数轴上的点表示有理数:

每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。

1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。

2.表示正数的点都在原点右边,表示负数的点都在原点左边。

3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

数轴的画法:

1.画一条直线(一般画成水平的直线);

2.在直线上根据需要选取一点为原点(在原点下面标上“0”);

3.确定正方向(一般规定向右为正,并用箭头表示出来);

4.选取适当的长度为单位长度,

从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;

从原点向左,用类似的方法依次表示-1,-2,-3,…。

数轴的应用范畴:符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)

在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。考点名称:相反数相反数的定义:

像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。

相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。

相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

相反数的特性:1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;

2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;

3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。

4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。

5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。

(互为)相反数的代数意义:

1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)

2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。

3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

相反数的判别:

我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。

多重符号的化简:

1、在一个数前面添加一个“+”好,所得的数与原数相同。

2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。

3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/594977.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值