有没有办法一眼扫过去,就知道一篇很长的文章是讲什么的呢?
词云图,就是做这个用途, 就像下面这张图,
词云图
看过是不是马上就有了“数据、分析、功能”这个概念?
那么这种图是怎么做出来的呢,很简单,下面我就带大家一步一步做出这张图来。
01 准备工作
首先安装好python (我用的是3.6版本),具体安装方法可以参考文末链接。
再下载好几个扩展库
(在OS下执行下面语句即可,# 及后面备注去除)
pip install re # 正则表达式库
pip install collections # 词频统计库
pip install numpy # numpy数据处理库
pip install jieba # 结巴分词
pip install wordcloud # 词云展示库
pip install PIL # 图像处理库
pip install matplotlib.pyplot # 图像展示库
准备好你打算统计的文件,命名为article.txt,保存到与程序文件相同目录中
准备一个做背景的图片,命名为wordcloud.jpg,同样保存到与程序文件相同目录中
02 编写代码
开启一个空python文件,命名为 wordcount.py,输入如下代码
# 导入扩展库
import re # 正则表达式库
import collections # 词频统计库
import numpy as np # numpy数据处理库
import jieba # 结巴分词
import wordcloud # 词云展示库
from PIL import Image # 图像处理库
import matplotlib.pyplot as plt # 图像展示库
# 读取文件
fn = open('article.txt') # 打开文件
string_data = fn.read() # 读出整个文件
fn.close() # 关闭文件
# 文本预处理
pattern = re.compile(u'\t|\n|\.|-|:|;|\)|\(|\?|"') # 定义正则表达式匹配模式
string_data = re.sub(pattern, '', string_data) # 将符合模式的字符去除
# 文本分词
seg_list_exact = jieba.cut(string_data, cut_all = False) # 精确模式分词
object_list = []
remove_words = [u'的', u',',u'和', u'是', u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',u' ',u'、',u'中',u'在',u'了',
u'通常',u'如果',u'我们',u'需要'] # 自定义去除词库
for word in seg_list_exact: # 循环读出每个分词
if word not in remove_words: # 如果不在去除词库中
object_list.append(word) # 分词追加到列表
# 词频统计
word_counts = collections.Counter(object_list) # 对分词做词频统计
word_counts_top10 = word_counts.most_common(10) # 获取前10最高频的词
print (word_counts_top10) # 输出检查
# 词频展示
mask = np.array(Image.open('wordcloud.jpg')) # 定义词频背景
wc = wordcloud.WordCloud(
font_path='C:/Windows/Fonts/simhei.ttf', # 设置字体格式
mask=mask, # 设置背景图
max_words=200, # 最多显示词数
max_font_size=100 # 字体最大值
)
wc.generate_from_frequencies(word_counts) # 从字典生成词云
image_colors = wordcloud.ImageColorGenerator(mask) # 从背景图建立颜色方案
wc.recolor(color_func=image_colors) # 将词云颜色设置为背景图方案
plt.imshow(wc) # 显示词云
plt.axis('off') # 关闭坐标轴
plt.show() # 显示图像
03 运行
如果一切正常,将输出结果如下:
词云图输出结果