NEW ARRIVAL

图形与几何


今天,我们沿着知识的足迹,随着周国红老师一起走进第二个板块的复习——图形与几何。

一、图形的认识与测量


一、图形的认识与测量
认识线和角
1.线
(1)直线:直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
(2)射线:射线只有一个端点;长度无限。
(3)线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
(4)平行线:在同一平面内,不相交的两条直线叫做平行线。
两条平行线间的距离都相等。
(5)垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
2.角
(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类
锐角:小于90°的角。
直角:等于90°的角。
钝角:大于90°而小于180°的角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角是180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
认识平面图形
1.长方形
(1)特征:对边相等,4个角都是直角的四边形。有两条对称轴。
(2)计算公式:c=2(a+b) ;s=ab
2.正方形
(1)特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。
(2)计算公式:c=4a ; s=a²
3.三角形
(1)特征:由三条线段围成的封闭图形。内角和是180度。三角形具有稳定性。三角形有三条高。
(2)计算公式:s=ah/2
(3) 分类
a.按角分:
锐角三角形 :三个角都是锐角。
直角三角形 :有一个角是直角。等腰直角三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
b.按边分:
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4.平行四边形
(1)特征:两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式:s=ah
5.梯形
(1)特征:只有一组对边平行的四边形。
等腰梯形有一条对称轴。
(2)计算公式:s=(a+b)h/2

6.圆
(1)特征:平面上的一种曲线图形。
圆心:圆中心的一点叫做圆心。一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示(在同一个圆里,有无数条半径,每条半径的长度都相等) 。
直径:通过圆心并且两端都在圆上的线段叫做直径。一般用d表示(同一个圆里有无数条直径,所有的直径都相等) 。
圆的大小由半径决定;圆的位置由圆心决定。
圆有无数条对称轴。
(2)计算公式:
d=2r ;r=d/2 ;c=πd ;
c=2πr ;s=πr²
7.扇形
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
弧:圆上AB两点之间的部分叫做弧,读作“弧AB”。
圆心角:顶点在圆心的角叫做圆心角。
8.圆环
(1)特征:由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2)计算公式:s=π(R²-r²)

9.轴对称图形
(1)特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
等腰梯形有1条对称轴。
扇形有1条对称轴。
长方形有2条对称轴。
等腰三角形有2条对称轴。
等边三角形有3条对称轴。
正方形有4条对称轴。
圆有无数条对称轴。

认识立体图形
1.长方体:六个面都是长方形(有时有两个相对的面是正方形) 。相对的面面积相等;有12条棱,相对的4条棱长度相等; 有8个顶点。
计算公式:
s=2(ab+ah+bh);
V=sh ;V=abh
2.正方体:6个面都是正方形; 6个面的面积相等;有12条棱,棱长都相等;有8个顶点 。
计算公式:S表=6a² ; v=a³
3.圆柱 :有3个面,两个底面是相等的圆,侧面是曲面 。
计算公式 :s侧=ch ; s表=s侧+s底×2 ; v=sh
4.圆锥 :有2个面,底面是一个圆,侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
把圆锥的侧面展开得到一个扇形。
计算公式: v= sh/3

二、图形的运动
♬..♩~ ♫. ♪♫. ♪ ~ ♬..♩1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(平移不改变图形的形状和大小)。
平移的两个要素:一是平移的方向,二是平移的距离。
2.旋转:在平面内,将一个图形绕一定点沿某个方向转动一个角度,这样的图形运动称为旋转(旋转不改变图形的形状和大小)。
旋转的三个要素:一是旋转中心,即绕哪一个点旋转;二是旋转方向,即是顺时针方向还是逆时针方向旋转;三是旋转角度。
3.轴对称图形:如果某一个图形沿着某条直线对折后能完全重合,那么这个图形就是轴对称图形。这条直线就是它的对称轴。
4.图形的放大与缩小:把一个图形的各边按一定比例进行放大或缩小,改变了图形的大小,而不改变图形的形状。当比的前项大于后项时,是把原图形放大,反过来是把原图形缩小。
5.观察物体:我们在日常生活中接触到的大部分立体图形不是对称的,从各个角度看到的形状也是不同的。要用平面图形表示出立体图形的形状,就需要从各个不同的方向去观察物体。

三、图形与位置
♬..♩~ ♫. ♪♫. ♪ ~ ♬..♩
1.用数对确定位置:数对中的两个数,第一个数表示列数,第二个数表示行数。列数从左往右数,行数从下往上数。
2.用方向和距离确定位置:
(1)明确观测点;
(2)确定方向;
(3)确定距离
梦想是船,践行是帆;乘着梦想的船,扬起践行的帆,我们继续远航!



图文:周国红
编辑:范 琴
审核:郭 英 曾美萍