展开全部
小数化成分数的方法:
1、小数点前面的整数部分保持不变。
2、看是几位小数,就在1后面添几个0做分母;
3、把原来的小62616964757a686964616fe4b893e5b19e31333366303065数去掉小数点后作分子;
4、能约分的要约分
题中4.4化成分数的过程:暂时忽略整数4。小数点后是一位,在1后面添1个0做分母(就是10)——把0.4去掉小数点做分子(就是4)——分数就是4/10——约分后是2/5。最终结果就是4又2/5。
题中3.375化成分数的过程:暂时忽略整数3。小数点后是三位,在1后面添3个0做分母(就是1000)——把0.375去掉小数点做分子(就是375)——分数就是375/1000——约分后是3/8。最终结果就是3又3/8。
扩展资料:
名词概述
任何有理小数都是有限小数或着是无限循环小数.
有限不用说了,例如0.354567=(0.354567/1)然后将分子、分母同时乘上10的若干倍数即可。
至于无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
举例说明
例如:0.333333……
循环节为3
则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……
前n项和为:3*0.1(1-(0.1)^(n))/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。