FL-Chain圆桌派
文章平均质量分 51
学习的学习者
懒惰懒惰再懒惰!!!
展开
-
Resolving dependency configuration ‘runtime’ is not allowed
最近在上手Fisco BCOS框架时,按照教程配置第一个区块链应用时,发现一直卡在了这一步。以下是教程截止至2021年11月3日给出的文档dependencies { testCompile group: 'junit', name: 'junit', version: '4.12' compile ("org.fisco-bcos.java-sdk:fisco-bcos-java-sdk:2.7.2") compile spring compile ('org.s原创 2021-11-03 15:31:58 · 1246 阅读 · 1 评论 -
联邦学习-区块链论文笔记:Record and Reward Federated Learning Contributions with Blockchain
链接:IEEE Xplore Full-Text PDF:作者:Ismael Martinez(蒙特利尔大学团队)前言:这篇文章虽然是投在国内举办的会议上面(没有丝毫瞧不起CyberC会议的想法哈),但是其想法我觉得还是很新颖的。该方案主体是采用了EOS区块链结构,使用off-chain来直接存储本地模型训练的梯度值,使用on-chain来存储本地模型训练得到梯度值的hash值,防止数据被篡改。激励机制是采用了token,文中没有提及太多,就是简单的根据数据消耗量来奖励。同时,off-chain是结原创 2021-10-14 22:05:51 · 13521 阅读 · 1 评论 -
联邦学习-区块链论文笔记:Blockchained On-Device Federated Learning
链接:IEEE Xplore Full-Text PDF:ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8733825作者:Hyesung Kim (延世大学团队) 一点感悟:区块链和联邦学习这块儿韩国大学这边起步很早,很经典的文章都能看到他们的身影。 Motivation:随着联邦学习的流行,谷歌团队也提出了vanilla FL模型。但是该模型存在3个缺陷:1)依赖唯一的中心服务器。该服务器一旦被攻击,将影响下属所有client客户原创 2021-10-12 16:40:11 · 9900 阅读 · 2 评论 -
联邦学习-区块链论文笔记:FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive
链接:IEEE Xplore Full-Text PDF:ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8905038作者:Xianglin Bao(中科大团队)Motivation:1)FL链缺乏对恶意训练节点的审计,不诚实的合作会扰乱模型的训练效果; 2)中心化服务器容易受到单点失误的攻击并且会将损失带给所有的训练节点; 3)在没有奖励制度的情况下,训练节点不情愿去训练本地模型。同时,由于担心不诚实的合作节点会窃取信息,原创 2021-10-12 16:38:33 · 1288 阅读 · 3 评论 -
联邦学习-区块链论文笔记:FLchain: Federated Learning via MEC-enabled Blockchain Network
链接:IEEE Xplore Full-Text PDF:作者:Umer Majeed(韩国庆熙大学团队) 又是韩国大学的团队,还挺好奇当时他们是怎么抓住这个风口的。Motivation:1)传统的联邦学习完全依赖于中央服务器的可靠性,来存储和计算全局模型的更新。Idea:亮点1-Channel:将peers隔离开,分成小的“区域”,每一小“区域”属于同一个channel。只有在同一个channel中的peers才有权在channel内读取、提交、验证事务。每个channel有单独的分类原创 2021-10-12 16:29:27 · 9812 阅读 · 2 评论 -
联邦学习-区块链论文笔记:Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT
链接:IEEE Xplore Full-Text PDF:ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843900作者:Yunlong Lu (北京邮电大学团队) Motivation:1)构建一联邦学习模型,不分享本地数据;2)提出了一种新的区块链授权协作架构,通过分布式多方共享数据,降低数据泄漏风险,数据所有者可以进一步控制共享数据的访问;3)将差异化隐私融入到联邦学习中,进一步保护数据隐私。 Idea:1)本文采原创 2021-10-12 16:25:23 · 14757 阅读 · 6 评论