python计算n的m次方_python – 有效地计算转换矩阵的元素乘积(m * m)*(n * n),得到(mn * mn)矩阵...

本文探讨如何使用Python有效地计算转换矩阵的元素乘积,将(m * m)和(n * n)矩阵转换为(mn * mn)矩阵。通过提供一个非向量化函数的示例,作者寻求一个更高效的Numpy向量化解决方案,以应用于构建因子隐马尔可夫模型的转移矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分别考虑形状(m,m)和(n,n)的输入矩阵X和Y.作为输出,我们需要给出(mn,mn)形状矩阵,使其乘以两个矩阵中的相应条目.

这两个矩阵X和Y代表转换矩阵.可以使用以下示例来说明所需的输出.这里,X是3×3矩阵,Y是2×2矩阵.

Matrix X

--------------

x1 x2 x3

x1| a b c

x2| d e f

x3| g h i

Matrix Y

--------------

y1 y2

y1| j k

y2| l m

Matrix Z (Output)

----------------------------------------

x1y1 x1y2 x2y1 x2y2 x3y1 x3y2

x1y1| aj ak bj bk cj ck

x1y2| al am bl bm cl cm

x2y1| dj dk ej ek fj fk

.

.

以下是我为此任务编写的非向量化函数:

def transition_multiply(X,Y):

num_rows_X=len(X)

num_rows_Y=len(Y)

out=[]

count=0

for i in range(num_rows_X):

for j in range(num_rows_Y):

out.append([])

for x in X[i]:

for y in Y[j]:

out[count].append(x*y)

count+=1

return out

X=[[1,2,3],[2,3,4],[3,4,5]]

Y=[[2,4],[1,2]]

import numpy

print transition_multiply(numpy.array(X),numpy.array(Y))

我确实获得了所需的输出,但意识到非矢量化版本会非常慢.使用Numpy,对这个计算进行矢量化的最佳方法是什么?

对于那些有兴趣为什么需要这种计算的人.从成分转移矩阵制作因子隐马尔可夫模型的转移矩阵是需要的.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值