机器学习分为监督学习和无监督学习。通常通过输入的数据有无标签来区别
1.supervised learning
the desired output is provided for example in the training set. In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output. 监督学习:通过已有的训练样本来训练的到一个最优模型。再通过这个模型将数据输入得到想要的输出。
(1)regression problem
predict continuous value output。for example,Given data about the size of houses on the real estate market,we have to predict the price on the basis of the area。即预测所要得到的结果是一个连续值
(2)classification problem
predict a discrete value output. Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.预测得到的结果是一个离散值。即结果只有有限个。
2.unsupervised learning
not told what the desired output .Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.没有训练样本,直接对数据进行建模。
(1) clustering algorithms