Numpy(Numerical python)是基于Python的高性能的开源数据计算与数据分析基础包,支持大量的数据与矩阵运算,此外也针对数组运算提供大量的数学函数库,Numpy本身没有提供高级的数据分析功能,但理解numpy数组的概念以及面向数组的运算设计有助于高效实用pandas等更加高级的工具。
一、ndarray:一种多维数组对象
Numpy最重要的一个特点就是N维数组对象(即ndarray),该对象是一个快速而灵活的同构数据多维容器,可以利用这种数组对整块数据执行一些数学运算,通常叫做矢量化运算,即大小相等的数组之间的任何算数运算都会将运算应用到元素级,该部分是ndarray相关操作总结
# 举例说明数组的优点 计算A**2 + B**3
a = [0,1,2,3,4]
b = [9,8,7,6,5]
### 一般Python循环方法
def pysum():
c = []
for i in range (len(a)):
c.append(a[i]**2 + b[i]**3)
return c
print (pysum())
### numpy 算法
"""
- 去掉循环,使一维数据更像单个数据,优化算法,提高运算速度
- 数组对象采用相同的数据类型,有助于节省运算和存储空间
"""
import numpy as np
def npsum():
a = np.array([1,2,3,4])
b = np.array([8,7,6,5])
c = a**2 + b**3
return c
print(npsum())
1.1ndarray的生成函数
注意:由于Numpy关注的是数值运算