java rocketmq消费_rocketmq消费负载均衡--push消费详解

本文深入解析DefaultMQPushConsumerImpl的启动及负载均衡过程,详细讲解客户端信号收集、负载均衡策略,以及核心步骤rebalanceByTopic的集群消费逻辑,帮助理解RocketMQ的消费分发机制。
摘要由CSDN通过智能技术生成

前言

本文介绍了DefaultMQPushConsumerImpl消费者,客户端负载均衡相关知识点。本文从DefaultMQPushConsumerImpl启动过程到实现负载均衡,从源代码一步一步分析,共分为6个部分进行介绍,其中第6个部分 rebalanceByTopic 为负载均衡的核心逻辑模块,具体过程运用了图文进行阐述。

介绍之前首先抛出几个问题:

1. 要做负载均衡,首先要解决的一个问题是什么?

2. 负载均衡是Client端处理还是Broker端处理?

个人理解:

1. 要做负载均衡,首先要做的就是信号收集。

所谓信号收集,就是得知道每一个consumerGroup有哪些consumer,对应的topic是谁。信号收集分为Client端信号收集与Broker端信号收集两个部分。

2. 负载均衡放在Client端处理。

具体做法是:消费者客户端在启动时完善rebalanceImpl实例,同时拷贝订阅信息存放rebalanceImpl实例对象中,另外也是很重要的一个步骤 -- 通过心跳消息,不停的上报自己到所有Broker,注册RegisterConsumer,等待上述过程准备好之后在Client端不断执行的负载均衡服务线程从Broker端获取一份全局信息(该consumerGroup下所有的消费Client),然后分配这些全局信息,获取当前客户端分配到的消费队列。

本文具体的内容:

I. copySubscription

Client端信号收集,拷贝订阅信息。

在DefaultMQPushConsumerImpl.start()时,会将消费者的topic订阅关系设置到rebalanceImpl的SubscriptionInner的map中用于负载:

private void copySubscription() throws MQClientException {

try {

//注:一个consumer对象可以订阅多个topic

Map sub = this.defaultMQPushConsumer.getSubscription();

if (sub != null) {

for (final Map.Entry entry : sub.entrySet()) {

final String topic = entry.getKey();

final String subString = entry.getValue();

SubscriptionData subscriptionData =

FilterAPI.buildSubscriptionData(this.defaultMQPushConsumer.getConsumerGroup(),//

topic, subString);

this.rebalanceImpl.getSubscriptionInner().put(topic, subscriptionData);

}

}

if (null == this.messageListenerInner) {

this.messageListenerInner = this.defaultMQPushConsumer.getMessageListener();

}

switch (this.defaultMQPushConsumer.getMessageModel()) {

case BROADCASTING:

break;

case CLUSTERING:

final String retryTopic = MixAll.getRetryTopic(this.defaultMQPushConsumer.getConsumerGroup());

SubscriptionData subscriptionData =

FilterAPI.buildSubscriptionData(this.defaultMQPushConsumer.getConsumerGroup(),//

retryTopic, SubscriptionData.SUB_ALL);

this.rebalanceImpl.getSubscriptionInner().put(retryTopic, subscriptionData);

break;

default:

break;

}

}

catch (Exception e) {

throw new MQClientException("subscription exception", e);

}

}

FilterAPI.buildSubscriptionData接口将订阅关系转换为SubscriptionData 数据,其中subString包含订阅tag等信息。另外,如果该消费者的消费模式为集群消费,则会将retry的topic一并放到。

II. 完善rebalanceImpl实例

Client继续收集信息:

this.rebalanceImpl.setConsumerGroup(this.defaultMQPushConsumer.getConsumerGroup());

this.rebalanceImpl.setMessageModel(this.defaultMQPushConsumer.getMessageModel());

this.rebalanceImpl.setAllocateMessageQueueStrategy(this.defaultMQPushConsumer

.getAllocateMessageQueueStrategy());

this.rebalanceImpl.setmQClientFactory(this.mQClientFactory);

本文以DefaultMQPushConsumerImpl为例,因此this对象类型为DefaultMQPushConsumerImp。

III. this.rebalanceService.start()

开启负载均衡服务。this.rebalanceService是一个RebalanceService实例对象,它继承与ServiceThread,是一个线程类。 this.rebalanceService.start()执行时,也即执行RebalanceService线程体:

@Override

public void run() {

log.info(this.getServiceName() + " service started");

while (!this.isStoped()) {

this.waitForRunning(WaitInterval);

this.mqClientFactory.doRebalance();

}

log.info(this.getServiceName() + " service end");

}

IV. this.mqClientFactory.doRebalance

客户端遍历消费组table,对该客户端上所有消费者独立进行负载均衡,分发消费队列:

public void doRebalance() {

for (String group : this.consumerTable.keySet()) {

MQConsumerInner impl = this.consumerTable.get(group);

if (impl != null) {

try {

impl.doRebalance();

} catch (Exception e) {

log.error("doRebalance exception", e);

}

}

}

}

V. MQConsumerInner.doRebalance

由于本文以DefaultMQPushConsumerImpl消费过程为例,即DefaultMQPushConsumerImpl.doRebalance:

@Override

public void doRebalance() {

if (this.rebalanceImpl != null) {

this.rebalanceImpl.doRebalance();

}

}

步骤II 中完善了rebalanceImpl实例,为调用rebalanceImpl.doRebalance()提供了初始数据。

rebalanceImpl.doRebalance()过程如下:

public void doRebalance() {

// 前文copySubscription中初始化了SubscriptionInner

Map subTable = this.getSubscriptionInner();

if (subTable != null) {

for (final Map.Entry entry : subTable.entrySet()) {

final String topic = entry.getKey();

try {

this.rebalanceByTopic(topic);

} catch (Exception e) {

if (!topic.startsWith(MixAll.RETRY_GROUP_TOPIC_PREFIX)) {

log.warn("rebalanceByTopic Exception", e);

}

}

}

}

this.truncateMessageQueueNotMyTopic();

}

VI. rebalanceByTopic -- 核心步骤之一

rebalanceByTopic方法中根据消费者的消费类型为BROADCASTING或CLUSTERING做不同的逻辑处理。CLUSTERING逻辑包括BROADCASTING逻辑,本部分只介绍集群消费负载均衡的逻辑。

集群消费负载均衡逻辑主要代码如下(省略了log等代码):

//1.从topicSubscribeInfoTable列表中获取与该topic相关的所有消息队列

Set mqSet = this.topicSubscribeInfoTable.get(topic);

//2. 从broker端获取消费该消费组的所有客户端clientId

List cidAll = this.mQClientFactory.findConsumerIdList(topic, consumerGroup);

f (null == mqSet) { ... }

if (null == cidAll) { ... }

if (mqSet != null && cidAll != null) {

List mqAll = new ArrayList();

mqAll.addAll(mqSet);

Collections.sort(mqAll);

Collections.sort(cidAll);

// 3.创建DefaultMQPushConsumer对象时默认设置为AllocateMessageQueueAveragely

AllocateMessageQueueStrategy strategy = this.allocateMessageQueueStrategy;

List allocateResult = null;

try {

// 4.调用AllocateMessageQueueAveragely.allocate方法,获取当前client分配消费队列

allocateResult = strategy.allocate(

this.consumerGroup,

this.mQClientFactory.getClientId(),

mqAll,

cidAll);

} catch (Throwable e) {

return;

}

// 5. 将分配得到的allocateResult 中的队列放入allocateResultSet 集合

Set allocateResultSet = new HashSet();

if (allocateResult != null) {

allocateResultSet.addAll(allocateResult);

}

//6. 更新updateProcessQueue

boolean changed = this.updateProcessQueueTableInRebalance(topic, allocateResultSet);

if (changed) {

this.messageQueueChanged(topic, mqSet, allocateResultSet);

}

}

注:BROADCASTING逻辑只包含上述的1、6。

集群消费负载均衡逻辑中的1、2、4这三个点相关知识为其核心过程,各个点相关知识如下:

第1点:从topicSubscribeInfoTable列表中获取与该topic相关的所有消息队列

0c73cd2177935cac398d4e000da94563.png

第2点: 从broker端获取消费该消费组的所有客户端clientId

首先,消费者对象不断地向所有broker发送心跳包,上报自己,注册并更新订阅关系以及客户端ChannelInfoTable;之后,客户端在做消费负载均衡时获取那些消费客户端,对这些客户端进行负载均衡,分发消费的队列。具体过程如下图所示:

9c1a82867ac01d2b9de580761e693c15.png

第4点:调用AllocateMessageQueueAveragely.allocate方法,获取当前client分配消费队列

f4348941785d85c20ff8c51801c2fba2.png

注:上图中cId1、cId2、...、cIdN通过 getConsumerIdListByGroup 获取,它们在这个ConsumerGroup下所有在线客户端列表中。

当前消费对进行负载均衡策略后获取对应的消息消费队列。具体的算法很简单,可以看源码。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值