1074.元素和为目标的子矩阵的数量
题目:给定矩阵和目标值target,返回元素和等于目标值的非空子矩阵的数量。
解析:对于这种子序列/数组/矩阵和等于某个target的数,需要想到前缀和,前缀和能够减少重复计算。
首先对于数组,如
n
u
m
s
=
[
1
,
3
,
6
,
12
,
7
]
nums=[1, 3, 6, 12, 7]
nums=[1,3,6,12,7],可以计算其前缀和数组
p
r
e
=
[
0
,
1
,
4
,
10
,
22
,
29
]
pre=[0, 1, 4, 10, 22, 29]
pre=[0,1,4,10,22,29],要计算子数组之和的种类,就要考虑到用一个字典来存储子数组和中出现某个结果的次数,这样就能够用于计数,从而查找和为目标
t
a
r
g
e
t
target
target的个数。因此前缀和+哈希表的思想很重要。
首先对于该数组,对前缀和数组进行遍历,对于pre[:2],包含的子数组和结果为1;对于pre[:3],包含的子数组和的结果为:1、4、4-1=3三种;对于pre[:4],包含的子数组和的结果为:1、4、10、4-1=3、10-1=9、10-3=6六种…因此对于整个pre数组,其可能存在的结果为1、4、10、22、29、4-1=3、10-1=9、10-4=6、22-1=20、22-4=18、22-10=10、29-1=28、29-4=25、29-10=19、29-22=7,这个例子的哈希表每种子数组和的结果都是1,不存在重复。
对于该题目中的矩阵,也可以针对行或者列计算对应的行或列的前缀和。
如以下矩阵,target为0:
(
0
1
0
1
1
1
0
1
0
)
\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ \end{pmatrix}
⎝⎛010111010⎠⎞
得到列对应的前缀和:
(
0
1
1
1
2
3
0
1
1
)
\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \\ \end{pmatrix}
⎝⎛010121131⎠⎞
根据前缀和计算对应子矩阵和并和target进行比较(代码是leetcode上看到的一个比较简洁的写法):
class Solution:
def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int:
# 前缀和+哈希表
row, col = len(matrix), len(matrix[0])
output = 0
for row_i in range(row):
b = [0] *col
for row_j in range(row_i, row):
for k in range(col):
b[k] += matrix[row_j][k]
pre = 0
check = {0:1}
for num in b:
pre += num
if pre-target in check:
output += check[pre-target]
if pre in check:
check[pre] += 1
else:
check[pre] = 1
return output
感觉理解起来有点难,自己还在探索怎么理解更简单。