python中scipy.ndimage.filter_在scipy.ndimage.filter.laplace()?

一个简单的检查是声明一个2D数组,除了中心的一个系数被设置为1,然后对其应用laplace函数。过滤的一个属性是,如果您提交一个带有单个1的图像,输出将是实际的过滤器本身,其中心位于1所在的位置-lookupimpulse response。。。或者更具体地说,Point Spread Function。在

如果您这样做,那么在运行laplace方法之后,您将看到它是什么样子:In [13]: import numpy as np

In [14]: import scipy.ndimage.filters

In [15]: A = np.zeros((5,5))

In [16]: A[2,2] = 1

In [17]: B = scipy.ndimage.filters.laplace(A)

In [18]: A

Out[18]:

array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],

[ 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0.]])

In [19]: B

Out[19]:

array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],

[ 0., 1., -4., 1., 0.],

[ 0., 0., 1., 0., 0.],

[ 0., 0., 0., 0., 0.]])

因此,它是第一个被使用的内核,但是请注意符号的变化。中心系数为正,其他系数为负。在

您需要查看的相关代码如下:

^{pr2}$

基本上,[1, -2, 1]的1D内核独立地应用于每个维度,就像correlate1d函数所做的那样。。。所以先是行,然后是列。这实际上计算了你在问题中看到的第一个掩码。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值