2分钟学会python数据分析与机器学习知识点(四)

第四节、Seaborn

1、风格
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

# def sinplot(flip=1):
#     x = np.linspace(0, 14, 100)
#     for i in range(1, 7):
#         plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
#     plt.show()

#sinplot()

#5种主题风格
# darkgrid
# whitegrid
# dark
# white
# ticks


#箱线图
# sns.set_style("whitegrid")
# data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
# sns.boxplot(data=data)
# #sns.set_style("dark")
# #sns.set_style("ticks")
# sns.boxplot(data=data, palette="deep")
# #sns.despine(left=True)
# plt.show()
#f, ax = plt.subplots()
# sns.violinplot(data)
# sns.despine(offset=10)
# plt.show()
#
#两个图画在一起的子图设置
def sinplot(flip=1):
    x = np.linspace(0, 14, 100)
    for i in range(1, 7):
        plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)

with sns.axes_style("darkgrid"):
    plt.subplot(211)
    sinplot()
plt.subplot(212)
sinplot(-1)

sns.set_context("poster")
plt.figure(figsize=(8, 6))
sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5})
plt.show()





2、颜色
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# 调色板
# 颜色很重要
# color_palette()能传入任何Matplotlib所支持的颜色
# color_palette()不写参数则默认颜色
# set_palette()设置所有图的颜色
# sns.set(rc={"figure.figsize": (12, 12)})
# current_palette = sns.color_palette()
# sns.palplot(current_palette)
# 圆形画板
# # 当你有六个以上的分类要区分时,最简单的方法就是在一个圆形的颜色空间中画出均匀间隔的颜色(这样的色调会保持亮度和饱和度不变)。这是大多数的当他们需要使用比当前默认颜色循环中设置的颜色更多时的默认方案。
# #
# # 最常用的方法是使用hls的颜色空间,这是RGB值的一个简单转换。
#sns.palplot(sns.color_palette("hls", 8))
# sns.palplot(sns.color_palette("hls", 14))
data = np.random.normal(size=(20, 12)) + np.arange(12) / 2
sns.boxplot(data=data,palette=sns.color_palette("hls", 12))

#sns.boxplot(data=data,palette=sns.color_palette("Blues"))
plt.show()
# hls_palette()函数来控制颜色的亮度和饱和
#
# l-亮度 lightness
# s-饱和 saturation

# sns.palplot(sns.hls_palette(8, l=.7, s=.9))
# sns.palplot(sns.color_palette("Paired",8))
# #
# # 使用xkcd颜色来命名颜色
# # xkcd包含了一套众包努力的针对随机RGB色的命名。产生了954个可以随时通过xdcd_rgb字典中调用的命名颜色。
#
# plt.plot([0, 1], [0, 1], sns.xkcd_rgb["pale red"], lw=3)
# plt.plot([0, 1], [0, 2], sns.xkcd_rgb["medium green"], lw=3)
# plt.plot([0, 1], [0, 3], sns.xkcd_rgb["denim blue"], lw=3)
# plt.show()
#
#
# colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"]
# sns.palplot(sns.xkcd_palette(colors))
# #
# # 连续色板
# # 色彩随数据变换,比如数据越来越重要则颜色越来越深
#
# sns.palplot(sns.color_palette("Blues"))
#
# #如果想要翻转渐变,可以在面板名称中添加一个_r后缀
#
# sns.palplot(sns.color_palette("BuGn_r"))
#
#
# # cubehelix_palette()调色板
# # 色调线性变换
#
# sns.palplot(sns.color_palette("cubehelix", 8))
# sns.palplot(sns.cubehelix_palette(8, start=.5, rot=-.75))
# sns.palplot(sns.cubehelix_palette(8, start=.75, rot=-.150))
# plt.show()
#
# #light_palette() 和dark_palette()调用定制连续调色板
# sns.palplot(sns.light_palette("green"))
# sns.palplot(sns.dark_palette("purple"))
# sns.palplot(sns.light_palette("navy", reverse=True))
#
# x, y = np.random.multivariate_normal([0, 0], [[1, -.5], [-.5, 1]], size=300).T
# pal = sns.dark_palette("green", as_cmap=True)
# sns.kdeplot(x, y, cmap=pal);
#
# sns.palplot(sns.light_palette((210, 90, 60), input="husl"))
# plt.show()
3、单变量分析
import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt
import seaborn as sns


#
# sns.set(color_codes=True)
# np.random.seed(sum(map(ord, "distributions")))

# x = np.random.normal(size=100)
# # sns.distplot(x,kde=False)
# # plt.show()
# #
# # sns.distplot(x, bins=20, kde=False)
# # plt.show()


#数据分布情况
#
# x = np.random.gamma(6, size=200)
# sns.distplot(x, kde=False, fit=stats.gamma)
# plt.show()


#第一步:根据均值和协方差生成数据
mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])
print(df)


#第二步:观测两个变量之间的分布关系最好用散点图
sns.jointplot(x="x", y="y", data=df);
plt.show()



x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
    sns.jointplot(x=x, y=y, color="k")

iris = sns.load_dataset("iris")

sns.pairplot(iris)
plt.show()

4、多变量分析
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid", color_codes=True)

np.random.seed(sum(map(ord, "categorical")))
titanic = sns.load_dataset("titanic")
tips = sns.load_dataset("tips")
iris = sns.load_dataset("iris")

#sns.stripplot(x="day", y="total_bill", data=tips);
#重叠是很常见的现象,但是重叠影响我观察数据的量了
#sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)
#plt.show()

#像一个树的画图均匀一些
# sns.swarmplot(x="day", y="total_bill", data=tips)
#plt.show()
#sns.swarmplot(x="day", y="total_bill", hue="sex",data=tips)
#plt.show()
#
# sns.swarmplot(x="total_bill", y="day", hue="time", data=tips);
# plt.show()

# 盒图
# IQR即统计学概念四分位距,第一/四分位与第三/四分位之间的距离
# N = 1.5IQR 如果一个值>Q3+N或 < Q1-N,则为离群点
# sns.boxplot(x="day", y="total_bill", hue="time", data=tips);
# plt.show()

#小提琴图
# sns.violinplot(x="total_bill", y="day", hue="time", data=tips);
# plt.show()

#
# sns.violinplot(x="day", y="total_bill", hue="sex", data=tips, split=True);
# plt.show()


sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)
plt.show()

#显示值的集中趋势可以用条形图

sns.barplot(x="sex", y="survived", hue="class", data=titanic);

#点图可以更好的描述变化差异

sns.pointplot(x="sex", y="survived", hue="class", data=titanic);



sns.pointplot(x="class", y="survived", hue="sex", data=titanic,
              palette={"male": "g", "female": "m"},
              markers=["^", "o"], linestyles=["-", "--"]);

#宽形数据
sns.boxplot(data=iris,orient="h");

#多层面板分类图

sns.factorplot(x="day", y="total_bill", hue="smoker", data=tips)

sns.factorplot(x="day", y="total_bill", hue="smoker", data=tips, kind="bar")

sns.factorplot(x="day", y="total_bill", hue="smoker",
               col="time", data=tips, kind="swarm")

sns.factorplot(x="time", y="total_bill", hue="smoker",
               col="day", data=tips, kind="box", size=4, aspect=.5)

plt.show()
# seaborn.factorplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind='point', size=4, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)
# Parameters:
# x,y,hue 数据集变量 变量名
# date 数据集 数据集名
# row,col 更多分类变量进行平铺显示 变量名
# col_wrap 每行的最高平铺数 整数
# estimator 在每个分类中进行矢量到标量的映射 矢量
# ci 置信区间 浮点数或None
# n_boot 计算置信区间时使用的引导迭代次数 整数
# units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据
# order, hue_order 对应排序列表 字符串列表
# row_order, col_order 对应排序列表 字符串列表
# kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 "v"/"h" color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False


5、读数据且保存图
import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt
import seaborn as sns

#第一步导入数据

#青年牛    平均数               标准差
#东北      0.6145              0.0455
#西北      0.591557622         0.045369844
#华中      0.609858198         0.079656856
#华南      0.608168602         0.028992897
#
#
# filepath = 'G:/nodebookPython3/bull/青年牛.png'
# # fig_path为想要存入的文件夹或地址
#
# #第一步:根据均值和标准差生成数据
# plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
# plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
# df=pd.DataFrame({'青年牛平均数':[0.6145,0.591557622,0.609858198,0.608168602], '青年牛标准差':[0.0455,0.045369844,0.079656856,0.028992897]}, columns=['青年牛平均数','青年牛标准差'])
# print(df)
#
# #第二步:观测两个变量之间的分布关系最好用散点图
# fig=sns.jointplot(x="青年牛平均数", y="青年牛标准差", data=df);
# plt.show()
# fig.savefig(filepath)

# 读数据画出图
path = r'G:\nodebookPython3\lesson\data_file\titanic_train.csv'
df=pd.read_csv(path)
# 绘制
sns.pairplot(data=df);
#sns.pairplot(data=df,kind='hex');
plt.show()

6、回归分析
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

import seaborn as sns

#使用seaborn内置数据集
sns.set(color_codes=True)
np.random.seed(sum(map(ord, "regression")))
tips = sns.load_dataset("tips")
print(tips.head())

#regplot()和lmplot()都可以绘制回归关系,推荐regplot()
#sns.regplot(x="total_bill", y="tip", data=tips)

#plt.show()

#支持更高级的内容
#sns.lmplot(x="total_bill", y="tip", data=tips);


# sns.regplot(data=tips,x="size",y="tip")
# plt.show()

#不满足要求就加上抖动:x_jitter
sns.regplot(x="size", y="tip", data=tips, x_jitter=.05)
plt.show()



# anscombe = sns.load_dataset("anscombe")
# sns.regplot(x="x", y="y", data=anscombe.query("dataset == 'I'"),
#            ci=None, scatter_kws={"s": 100})
#
#
# sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'II'"),
#            ci=None, scatter_kws={"s": 80})
#
# sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'II'"),
#            order=2, ci=None, scatter_kws={"s": 80});
#
# sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips);
#
# sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips,
#            markers=["o", "x"], palette="Set1");
#
# sns.lmplot(x="total_bill", y="tip", hue="smoker", col="time", data=tips);
#
# sns.lmplot(x="total_bill", y="tip", hue="smoker",
#            col="time", row="sex", data=tips);
#
# f, ax = plt.subplots(figsize=(5, 5))
# sns.regplot(x="total_bill", y="tip", data=tips, ax=ax);
#
#
# sns.lmplot(x="total_bill", y="tip", col="day", data=tips,
#            col_wrap=2, size=4);
#
# sns.lmplot(x="total_bill", y="tip", col="day", data=tips,
#            aspect=.8);
7、FacetGrid子图绘制
import numpy as np
import pandas as pd
import seaborn as sns
from scipy import stats
import matplotlib as mpl
import matplotlib.pyplot as plt
sns.set(style="ticks")
np.random.seed(sum(map(ord, "axis_grids")))
tips = sns.load_dataset("tips")
print(tips.head())

#想画两个图展示time
#画出条形图
g = sns.FacetGrid(tips, col="time")
g.map(plt.hist, "tip");

plt.show()


#画出散点图
g = sns.FacetGrid(tips, col="sex", hue="smoker")
g.map(plt.scatter, "total_bill", "tip", alpha=.7)
g.add_legend();
plt.show()

#改变颜色
g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True)
g.map(sns.regplot, "size", "total_bill", color=".1", fit_reg=False, x_jitter=.1);
plt.show()


g = sns.FacetGrid(tips, col="day", size=4, aspect=.5)
g.map(sns.barplot, "sex", "total_bill");

from pandas import Categorical
ordered_days = tips.day.value_counts().index
print (ordered_days)
#传进来的数据要用pandas中的数据
ordered_days = Categorical(['Thur', 'Fri', 'Sat', 'Sun'])
g = sns.FacetGrid(tips, row="day", row_order=ordered_days,
                  size=1.7, aspect=4,)
g.map(sns.boxplot, "total_bill");

pal = dict(Lunch="seagreen", Dinner="gray")
g = sns.FacetGrid(tips, hue="time", palette=pal, size=5)
g.map(plt.scatter, "total_bill", "tip", s=50, alpha=.7, linewidth=.5, edgecolor="white")
g.add_legend();

g = sns.FacetGrid(tips, hue="sex", palette="Set1", size=5, hue_kws={"marker": ["^", "v"]})
g.map(plt.scatter, "total_bill", "tip", s=100, linewidth=.5, edgecolor="white")
g.add_legend();


with sns.axes_style("white"):
    g = sns.FacetGrid(tips, row="sex", col="smoker", margin_titles=True, size=2.5)
g.map(plt.scatter, "total_bill", "tip", color="#334488", edgecolor="white", lw=.5);
g.set_axis_labels("Total bill (US Dollars)", "Tip");
g.set(xticks=[10, 30, 50], yticks=[2, 6, 10]);
g.fig.subplots_adjust(wspace=.02, hspace=.02);
#g.fig.subplots_adjust(left  = 0.125,right = 0.5,bottom = 0.1,top = 0.9, wspace=.02, hspace=.02)


iris = sns.load_dataset("iris")
g = sns.PairGrid(iris)
g.map(plt.scatter);

g = sns.PairGrid(iris)
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter);

g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend();


g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"], hue="species")
g.map(plt.scatter);



g = sns.PairGrid(tips, hue="size", palette="GnBu_d")
g.map(plt.scatter, s=50, edgecolor="white")
g.add_legend();
plt.show()


8、热力图
import matplotlib.pyplot as plt
import numpy as np;
np.random.seed(0)
import seaborn as sns;
sns.set()

# uniform_data = np.random.rand(3, 3)
# print (uniform_data)
# heatmap = sns.heatmap(uniform_data)
#
# ax = sns.heatmap(uniform_data, vmin=0.2, vmax=0.5)
#
# normal_data = np.random.randn(3, 3)
# print (normal_data)
# ax = sns.heatmap(normal_data, center=0)
#
flights = sns.load_dataset("flights")
flights.head()

flights = flights.pivot("month", "year", "passengers")
print (flights)
# ax = sns.heatmap(flights)
#ax = sns.heatmap(flights, annot=True,fmt="d")

ax = sns.heatmap(flights, linewidths=.5)


#
#
# ax = sns.heatmap(flights, cmap="YlGnBu")
#
# ax = sns.heatmap(flights, cbar=False)
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值