66.题目
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
思路:回溯法。让机器人从初始位置开始向能走的各个位置探索,若不堪卒条件则退回上一步。
代码如下:
# -*- coding:utf-8 -*-
class Solution:
def movingCount(self, threshold, rows, cols):
# write code here
if rows<1 or cols<1 or threshold<0:
return 0
#建立一个和坐标图大小相同的布尔矩阵,来表示当前路径对否被走过,走过为false
visited=[0]*(rows*cols)
return self.moving(threshold,rows,cols,0,0,visited)
#threshold为题目中的K,rows和cols表示坐标图的行列数,curx和cury为机器人当前所在的行列数
def moving(self,threshold,rows,cols,curx,cury,visited):
#cnt为机器人到达的格子数
cnt=0
#第一个if表示当前格子已经被经过或者超过了坐标图边界,则停止
if 0<=curx<rows and 0<=cury<cols and not visited[curx*cols + cury]:
#当格子数的分解和小于阈值时,所在格子数有效,cnt加1,并将其置为true
if self.calbitsum(curx) + self.calbitsum(cury)<=threshold:
visited[curx*cols + cury]=1
cnt=1+self.moving(threshold,rows,cols,curx-1,cury,visited)+self.moving(threshold,rows,cols,curx+1,cury,visited)+ self.moving(threshold,rows,cols,curx,cury-1,visited)+self.moving(threshold,rows,cols,curx,cury+1,visited)
return cnt
def calbitsum(self,x):
ressum=0
while x!=0:
ressum +=x%10
x/=10
return ressum