剑指offer刷题(Python版本)66.机器人的运动范围

本文介绍了一种使用回溯法解决机器人在限定条件下的路径计数问题。机器人在一个m行n列的网格中移动,每次只能向左、右、上、下移动一格,且不能进入数位和超过k的格子。通过递归调用,记录已访问过的格子,计算机器人能够到达的有效格子数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

66.题目

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

思路:回溯法。让机器人从初始位置开始向能走的各个位置探索,若不堪卒条件则退回上一步。

代码如下:

# -*- coding:utf-8 -*-
class Solution:
    def movingCount(self, threshold, rows, cols):
        # write code here
        if rows<1 or cols<1 or threshold<0:
            return 0
        #建立一个和坐标图大小相同的布尔矩阵,来表示当前路径对否被走过,走过为false
        visited=[0]*(rows*cols)
        return self.moving(threshold,rows,cols,0,0,visited)
    #threshold为题目中的K,rows和cols表示坐标图的行列数,curx和cury为机器人当前所在的行列数
    def moving(self,threshold,rows,cols,curx,cury,visited):
        #cnt为机器人到达的格子数
        cnt=0
        #第一个if表示当前格子已经被经过或者超过了坐标图边界,则停止
        if 0<=curx<rows and 0<=cury<cols and not visited[curx*cols + cury]:
            #当格子数的分解和小于阈值时,所在格子数有效,cnt加1,并将其置为true
            if self.calbitsum(curx) + self.calbitsum(cury)<=threshold:
                visited[curx*cols + cury]=1
                cnt=1+self.moving(threshold,rows,cols,curx-1,cury,visited)+self.moving(threshold,rows,cols,curx+1,cury,visited)+ self.moving(threshold,rows,cols,curx,cury-1,visited)+self.moving(threshold,rows,cols,curx,cury+1,visited)
        return cnt
    def calbitsum(self,x):
        ressum=0
        while x!=0:
            ressum +=x%10
            x/=10
        return ressum

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值