numpy.minimum
numpy.
minimum
(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'minimum'>
Element-wise minimum of array elements.
Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated.
Parameters: | x1, x2 : array_like The arrays holding the elements to be compared. If out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default **kwargs For other keyword-only arguments, see the ufunc docs. |
---|---|
Returns: | y : ndarray or scalar The minimum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. |
See also
maximum Element-wise maximum of two arrays, propagates NaNs.
fmin Element-wise minimum of two arrays, ignores NaNs.
amin The minimum value of an array along a given axis, propagates NaNs.
nanmin The minimum value of an array along a given axis, ignores NaNs.
Notes
The minimum is equivalent to np.where(x1 <= x2, x1, x2)
when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting.
Examples
>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])
>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
array([[ 0.5, 0. ],
[ 0. , 1. ]])
>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([nan, nan, nan])
>>> np.minimum(-np.Inf, 1)
-inf