tf.scatter_nd()

参考 tf.scatter_nd() - 云+社区 - 腾讯云

Scatter updates into a new tensor according to indices.

tf.scatter_nd(
    indices,
    updates,
    shape,
    name=None
)

Creates a new tensor by applying sparse updates to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given shape according to indices. This operator is the inverse of the tf.gather_nd operator which extracts values or slices from a given tensor.

This operation is similar to tensor_scatter_add, except that the tensor is zero-initialized. Calling tf.scatter_nd(indices, values, shape) is identical to tensor_scatter_add(tf.zeros(shape, values.dtype), indices, values)

If indices contains duplicates, then their updates are accumulated (summed).

WARNING: The order in which updates are applied is nondeterministic, so the output will be nondeterministic if indices contains duplicates -- because of some numerical approximation issues, numbers summed in different order may yield different results.

indices is an integer tensor containing indices into a new tensor of shape shape. The last dimension of indices can be at most the rank of shape:

indices.shape[-1] <= shape.rank

The last dimension of indices corresponds to indices into elements (if indices.shape[-1] = shape.rank) or slices (if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of shape. updates is a tensor with shape

indices.shape[:-1] + shape[indices.shape[-1]:]

The simplest form of scatter is to insert individual elements in a tensor by index. For example, say we want to insert 4 scattered elements in a rank-1 tensor with 8 elements.

                

In Python, this scatter operation would look like this:

    indices = tf.constant([[4], [3], [1], [7]])
    updates = tf.constant([9, 10, 11, 12])
    shape = tf.constant([8])
    scatter = tf.scatter_nd(indices, updates, shape)
    with tf.Session() as sess:
      print(sess.run(scatter))

The resulting tensor would look like this:

[0, 11, 0, 10, 9, 0, 0, 12]

We can also, insert entire slices of a higher rank tensor all at once. For example, if we wanted to insert two slices in the first dimension of a rank-3 tensor with two matrices of new values.

                            

In Python, this scatter operation would look like this:

    indices = tf.constant([[0], [2]])
    updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
                            [7, 7, 7, 7], [8, 8, 8, 8]],
                           [[5, 5, 5, 5], [6, 6, 6, 6],
                            [7, 7, 7, 7], [8, 8, 8, 8]]])
    shape = tf.constant([4, 4, 4])
    scatter = tf.scatter_nd(indices, updates, shape)
    with tf.Session() as sess:
      print(sess.run(scatter))

The resulting tensor would look like this:

[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
 [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
 [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
 [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]

Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, the index is ignored.

Args:

  • indices: A Tensor. Must be one of the following types: int32, int64. Index tensor.
  • updates: A Tensor. Updates to scatter into output.
  • shape: A Tensor. Must have the same type as indices. 1-D. The shape of the resulting tensor.
  • name: A name for the operation (optional).

Returns:

  • A Tensor. Has the same type as updates.

Compat aliases

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值