单词搜索(回溯,清晰图解)

给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

示例 1:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true

示例 2:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
输出:true

示例 3:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
输出:false

提示:

  • m == board.length
  • n = board[i].length
  • 1 <= m, n <= 6
  • 1 <= word.length <= 15
  • board 和 word 仅由大小写英文字母组成

进阶:你可以使用搜索剪枝的技术来优化解决方案,使其在 board 更大的情况下可以更快解决问题?

解题思路:
本问题是典型的回溯问题,需要使用深度优先搜索(DFS)+ 剪枝解决。

深度优先搜索: 即暴力法遍历矩阵中所有字符串可能性。DFS 通过递归,先朝一个方向搜到底,再回溯至上个节点,沿另一个方向搜索,以此类推。
剪枝: 在搜索中,遇到“这条路不可能和目标字符串匹配成功”的情况,例如当前矩阵元素和目标字符不匹配、或此元素已被访问,则应立即返回,从而避免不必要的搜索分支。
算法解析:
递归参数: 当前元素在矩阵 board 中的行列索引 i 和 j ,当前目标字符在 word 中的索引 k 。
终止条件:
返回 false : (1) 行或列索引越界 或 (2) 当前矩阵元素与目标字符不同 或 (3) 当前矩阵元素已访问过 ( (3) 可合并至 (2) ) 。
返回 true: k = len(word) - 1 ,即字符串 word 已全部匹配。
递推工作:
标记当前矩阵元素: 将 board[i][j] 修改为 空字符 '' ,代表此元素已访问过,防止之后搜索时重复访问。
搜索下一单元格: 朝当前元素的 上、下、左、右 四个方向开启下层递归,使用 或 连接 (代表只需找到一条可行路径就直接返回,不再做后续 DFS ),并记录结果至 res 。
还原当前矩阵元素: 将 board[i][j] 元素还原至初始值,即 word[k] 。
返回值: 返回布尔量 res ,代表是否搜索到目标字符串。
使用空字符(Python: '' , Java/C++: '\0' )做标记是为了防止标记字符与矩阵原有字符重复。当存在重复时,此算法会将矩阵原有字符认作标记字符,从而出现错误。

class Solution {
public:
    bool exist(vector<vector<char>>& board, string word) {
        rows = board.size();
        cols = board[0].size();
        for(int i = 0; i < rows; i++) {
            for(int j = 0; j < cols; j++) {
                if (dfs(board, word, i, j, 0)) return true;
            }
        }
        return false;
    }
private:
    int rows, cols;
    bool dfs(vector<vector<char>>& board, string word, int i, int j, int k) {
        if (i >= rows || i < 0 || j >= cols || j < 0 || board[i][j] != word[k]) return false;
        if (k == word.size() - 1) return true;
        board[i][j] = '\0';
        bool res = dfs(board, word, i + 1, j, k + 1) || dfs(board, word, i - 1, j, k + 1) || 
                      dfs(board, word, i, j + 1, k + 1) || dfs(board, word, i , j - 1, k + 1);
        board[i][j] = word[k];
        return res;
    }
};


复杂度分析:
在代码中,M, N分别为矩阵行列大小, K为字符串 word 长度。

时间复杂度:O(3^KMN): 最差情况下,需要遍历矩阵中长度为K字符串的所有方案,时间复杂度为O(3^K)矩阵中共有MN个起点,时间复杂度为O(MN)
方案数计算: 设字符串长度为K ,搜索中每个字符有上、下、左、右四个方向可以选择,舍弃回头(上个字符)的方向,剩下3种选择,因此方案数的复杂度为O(3^K)
空间复杂度:O(K): 搜索过程中的递归深度不超过K,因此系统因函数调用累计使用的栈空间占用O(K)(因为函数返回后,系统调用的栈空间会释放)。最坏情况下K = MN,递归深度为 MN ,此时系统栈使用O(MN)的额外空间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值