数据流的中位数

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

  • 例如 arr = [2,3,4] 的中位数是 3 。
  • 例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5 。

实现 MedianFinder 类:

  • MedianFinder() 初始化 MedianFinder 对象。

  • void addNum(int num) 将数据流中的整数 num 添加到数据结构中。

  • double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。

示例 1:

输入
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]

解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

思路

我们用两个优先队列\textit{queMax}\textit{queMin}分别记录大于中位数的数和小于等于中位数的数。当累计添加的数的数量为奇数时,\textit{queMin}中的数的数量比\textit{queMax}多一个,此时中位数为 \textit{queMin}的队头。当累计添加的数的数量为偶数时,两个优先队列中的数的数量相同,此时中位数为它们的队头的平均值。

当我们尝试添加一个数\textit{num}到数据结构中,我们需要分情况讨论:

\textit{num} \leq \max \{\textit{queMin}\}

此时\textit{num}小于等于中位数,我们需要将该数添加到\textit{queMin}中。新的中位数将小于等于原来的中位数,因此我们可能需要将\textit{queMin}中最大的数移动到\textit{queMax}中。

textit{num} > \max \{\textit{queMin}\}

此时\textit{num}大于中位数,我们需要将该数添加到\textit{queMin}中。新的中位数将大于等于原来的中位数,因此我们可能需要将\textit{queMax}中最小的数移动到\textit{queMin}中。

特别地,当累计添加的数的数量为0时,我们将\textit{num}添加到\textit{queMin}中。

代码

class MedianFinder {
public:
    priority_queue<int, vector<int>, less<int>> queMin;
    priority_queue<int, vector<int>, greater<int>> queMax;

    MedianFinder() {}

    void addNum(int num) {
        if (queMin.empty() || num <= queMin.top()) {
            queMin.push(num);
            if (queMax.size() + 1 < queMin.size()) {
                queMax.push(queMin.top());
                queMin.pop();
            }
        } else {
            queMax.push(num);
            if (queMax.size() > queMin.size()) {
                queMin.push(queMax.top());
                queMax.pop();
            }
        }
    }

    double findMedian() {
        if (queMin.size() > queMax.size()) {
            return queMin.top();
        }
        return (queMin.top() + queMax.top()) / 2.0;
    }
};

复杂度分析

时间复杂度:\textit{addNum}: O(\log n),其中n为累计添加的数的数量,\textit{findMedian}:O(1)


空间复杂度:O(n),主要为优先队列的开销。

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值