860.柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
- 输入:[5,5,5,10,20]
- 输出:true
- 解释:
- 前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
- 第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
- 第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
- 由于所有客户都得到了正确的找零,所以我们输出 true。
本题思路用贪心算法就是,如果当前收到的钱,都能够给下一个顾客找零,全局就都能找零。
如果第一位顾客给的钱大于5,一定找不开。
设置3个变量,分别记录手里5、10、20元的个数:five,ten, twenty。
如果当前客户给5块钱,无论手里有什么样的钱都可,因为不用找零;
如果当前客户给10块钱,手里则至少要有一张5块钱,five--;
如果当前客户给20块钱,手里则应该有总和恰好为15元的钞票,优先找零10+5组合,如果10块没有再找2个5块的。若不满足条件,直接返回false
class Solution {
public boolean lemonadeChange(int[] bills) {
if(bills[0]!=5) return false;
int five=0, ten=0;
for(int i=0;i<bills.length;i++){
if(bills[i]==5){
five++;
}
else if(bills[i]==10){
if(five>0){
five--;
ten++;
}else{
return false;
}
}else{
if(ten>=1 && five>=1) {
ten--;
five--;
}else if(ten<1 && five>=3){
five=five-3;
}else{
return false;
}
}
}
return true;
}
}
406.根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
- 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
- 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
- 解释:
- 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
- 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
- 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
- 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
- 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
本题hi表示身高,ki表示前面身高大于或等于hi的个数,所以肯定要先确定好一边,根据元素的第二个值开始进行升序排列。
然后再根据第一个值的大小进行降序排序,因为第一个数值表示该人的身高,目前已经按照前面比该人高的顺序排完序,因此如果第一个值不相等的情况下,值大的优先排在前面。
因此可以先定义一个比较函数。先让第二个数值小的排到前面,然后比较第一个值。注意本题需要创建一个新的数组,因此使用LinkedList会更高效。
这里要掌握一下Java中lambda表达式实现排序:
//升序排列
//第一种写法
Arrays.sort(data,(o1,o2)->o1-o2);
//第二种写法
Arrays.sort(data,(o1,o2)->o1.toCompare(o2));
//降序排列
//第一种写法
Arrays.sort(data,(o1,o2)->o2-o1);
//第二种写法
Arrays.sort(data,(o1,o2)->o2.toCompare(o1));
本题思路不难,难在对于编程语法的熟练和掌握程度上。
import java.util.Arrays;
class Solution {
public int[][] reconstructQueue(int[][] people) {
//创建一个新的二维数组,有people.length个行,每行有两个元素
List<int[]> que = new ArrayList<>();
//如果身高属性相等,则排列属性按照升序排列
//如果身高属性不等,则按照身高属性降序排列
Arrays.sort(people, (a,b)->a[0]==b[0]?a[1]-b[1]:b[0]-a[0]);
for(int[] p : people){
que.add(p[1],p);
}
return que.toArray(new int[que.size()][2]);
}
}
452. 用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
- 输入:points = [[10,16],[2,8],[1,6],[7,12]]
- 输出:2
- 解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:
- 输入:points = [[1,2],[3,4],[5,6],[7,8]]
- 输出:4
本题首先按照开始坐标进行排序。然后进行一边的比较,设置变量count=1计算箭数,cover=0计算当前能够一次性引爆的气球数量。第一个气球可以不用看,
- 首先,要将数组按照气球的起始坐标升序排序,以确保按顺序处理气球。
- 在遍历气球时,要根据当前气球的开始坐标是否在前一个气球的结束坐标区间内来确定是否需要增加箭的数量。
- 当发现当前气球的起始坐标不在前一个气球的结束坐标区间内时,需要增加箭的数量。
- 当发现被覆盖到的时候,则继续查看下一个气球坐标是否在这个覆盖范围内
上面是我自己的思路,但是运行的时候有一些案例没有通过,在于起点更新错了,要判断当前气球的终止坐标和前一个气球的终止坐标谁小,因为重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
import java.util.Arrays;
class Solution {
public int findMinArrowShots(int[][] points) {
if (points.length == 0) return 0;
int count = 1;
Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0])); // 按照开始坐标升序排序
for (int i = 1; i < points.length; i++) {
if (points[i][0] > points[i-1][1]) {
count++; // 当前气球的起始坐标不在前一个气球的结束坐标区间内,增加箭的数量
} else {
points[i][1] = Math.min(points[i-1][1], points[i][1]); // 更新覆盖范围
}
}
return count;
}
}
435. 无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
- 输入: [ [1,2], [2,3], [3,4], [1,3] ]
- 输出: 1
- 解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
- 输入: [ [1,2], [1,2], [1,2] ]
- 输出: 2
- 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
- 输入: [ [1,2], [2,3] ]
- 输出: 0
- 解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
1 <= intervals.length <= 105
intervals[i].length == 2
-5 * 104 <= starti < endi <= 5 * 104
首先这道题还是要按照开始坐标进行升序排序。因为要移除重叠区间的最小数量,也就意味着,要将和其他区域重复次数最多的移除走。上一道题里面计算的箭数,起始就是这里没有交叉的区间数。可以找到没有交叉的区间个数,最后用总区间数,减去没有交叉部分的个数即为所求。
先对数组进行开始坐标升序排序,设置count记录非重叠数,用end记录当前第一个元素的终点坐标。
在遍历区间时,要根据当前区间的开始坐标是否在前一个区间的结束坐标区间内来确定是否需要增加重叠数量。
如果在,说明有重叠,则不做任何操作,继续让前一个区间的结束坐标等于第一个,如果不在,则count++,更新终点坐标为当前区间的终点坐标。
class Solution {
//如果在,说明有重叠,则不做任何操作,继续让终点坐标等于前一个坐标终点
//如果不在,则count++,更新终点坐标为当前区间的终点坐标。
public int eraseOverlapIntervals(int[][] intervals) {
int count=1;
Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));
for(int i=1;i<intervals.length;i++){
if(intervals[i][0]<intervals[i-1][1]){//当有重叠
intervals[i][1]=Math.min(intervals[i][1], intervals[i-1][1]);
continue;
}
count++;
}
return intervals.length-count;
}
}