一、题目描述
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
示例 2:
输入:n = 5
输出:5
二、解题方法
1.利用递归
效率很低的解法
代码如下:
var fib = function(n) {
if(n<1) return 0;
if(n<2) return 1;
return (fib(n-1)+fib(n-2))%1000000007
};
2.动态规划
解题思路:
递归之所以慢是因为重复计算太多,简单的办法就是从下往上计算,首先根据第一项和第二项算出第三项,一次类推就可以算出第n项了。
代码如下:
var fib = function(n) {
if(n==0||n==1}{
return n
}
let a=1,b=0,result=0
for(let i=2;i<=n;i++){
result=(a+b)%1000000007
b=a;
a=result
}
return result%1000000007
};
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。
3.矩阵快速幂
不太实用的一种方法
解题思路
首先我们可以构建这样一个递推关系:
因此
令
因此只要我们能快速计算矩阵 M 的 n 次幂,就可以得到 F(n)的值。如果直接求取 M^n ,时间复杂度是 O(n),可以定义矩阵乘法,然后用快速幂算法来加速这里 M^n的求取。
代码如下
var fib = function(n) {
if (n < 2) {
return n;
}
const q = [[1, 1], [1, 0]];
const res = pow(q, n - 1);
return res[0][0];
};
const pow = (a, n) => {
let ret = [[1, 0], [0, 1]];
while (n > 0) {
if ((n & 1) === 1) {
ret = multiply(ret, a);
}
n >>= 1;
a = multiply(a, a);
}
return ret;
}
const multiply = (a, b) => {
const c = new Array(2).fill(0).map(() => new Array(2).fill(0));
for (let i = 0; i < 2; i++) {
for (let j = 0; j < 2; j++) {
c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
}
}
return c;
}
复杂度分析
- 时间复杂度:O(\log n)。
- 空间复杂度:O(1)。