剑指 Offer 10- I. 斐波那契数列-js

一、题目描述

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1
示例 2:

输入:n = 5
输出:5

二、解题方法

1.利用递归

效率很低的解法

代码如下:

var fib = function(n) {
    if(n<1) return 0;
    if(n<2) return 1;
   return (fib(n-1)+fib(n-2))%1000000007
};

2.动态规划

解题思路:

递归之所以慢是因为重复计算太多,简单的办法就是从下往上计算,首先根据第一项和第二项算出第三项,一次类推就可以算出第n项了。
代码如下:

var fib = function(n) {
    if(n==0||n==1}{
    return n
    }
let a=1,b=0,result=0
    for(let i=2;i<=n;i++){
        result=(a+b)%1000000007
        b=a;
        a=result
    }
    return result%1000000007
};

复杂度分析

  • 时间复杂度:O(n)。
  • 空间复杂度:O(1)。

3.矩阵快速幂

不太实用的一种方法

解题思路

首先我们可以构建这样一个递推关系:
在这里插入图片描述
因此
在这里插入图片描述

在这里插入图片描述
因此只要我们能快速计算矩阵 M 的 n 次幂,就可以得到 F(n)的值。如果直接求取 M^n ,时间复杂度是 O(n),可以定义矩阵乘法,然后用快速幂算法来加速这里 M^n的求取。

代码如下


var fib = function(n) {
    if (n < 2) {
        return n;
    }
    const q = [[1, 1], [1, 0]];
    const res = pow(q, n - 1);
    return res[0][0];
};

const pow = (a, n) => {
    let ret = [[1, 0], [0, 1]];
    while (n > 0) {
        if ((n & 1) === 1) {
            ret = multiply(ret, a);
        }
        n >>= 1;
        a = multiply(a, a);
    }
    return ret;
}

const multiply = (a, b) => {
    const c = new Array(2).fill(0).map(() => new Array(2).fill(0));
    for (let i = 0; i < 2; i++) {
        for (let j = 0; j < 2; j++) {
            c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
        }
    }
    return c;
}

复杂度分析

  • 时间复杂度:O(\log n)。
  • 空间复杂度:O(1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值