接续上篇,让我们更深入地探讨Jacobi迭代法的数学思想和几何理解。
数学思想
Jacobi迭代法是基于矩阵分割的一种迭代算法。给定一个线性方程组:
A x = b Ax = b Ax=b
其中, A A A 是一个 n × n n \times n n×n 的方程系数矩阵, x x x 是一个包含 n n n 个未知数的向量, b b b 是一个已知的常数向量。
矩阵 A A A 可以被分割为对角部分 D D D 和其余部分 R R R(也就是 L + U L+U L+U,下三角和上三角部分):
A = D + R A = D + R A=D+R
这样,原方程可以写作:
D x = b − R x Dx = b - Rx Dx=b−Rx
为了求解