计算方法-Jacobi(雅可比)迭代法

太累了,不想写太多说明了,看ppt看代码吧,推荐华东理工大学的慕课
链接:https://www.bilibili.com/video/av83437134

计算方法-Jacobi(雅可比)迭代法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

针对上面的课堂作业,我写了下面的代码,运行成功

"""
@Date:2020/2/24
@Author:indigoDeveloper
@E-mail:changwenhan0530@gmail.com
"""
import numpy as np

def Jacob(a,b):
    x1 = x2 = x3 = 1 #设置(1,1,1)为初始点
    count = 0
    X = [[x1],[x2],[x3]]
    Xarray = np.array(X)   #转为矩阵
    barray = np.array(b)
    
    array = np.array(a) #读入矩阵
    L = U = H = [[0,0,0],
                [0,0,0],
                [0,0,0]]#创建同等大小的矩阵L U
    D = [[4,0,0],
         [0,5,0],
         [0,0,7]]
    Darray = np.array(D)
    Darray_N = np.linalg.inv(Darray)  #取逆矩阵

    for i in range(len(a)):
        for j in range(len(a[0])):
            #为L添加内容
            if i>j:
                L[i][j] = a[i][j]
            #为U添加内容
            elif j>i:
                U[i][j] = a[i][j]
            #相加生成H阵
    for i in range(len(a)):
        for j in range(len(a[0])):
            H[i][j] = (L[i][j] + H[i][j])/2
    Harray = np.array(H)
    #开始迭代
    while count<20:
        a_1 = np.dot(Darray_N,Harray)
        a_2 = np.dot(a_1,Xarray)
        a_3 = -1*a_2
        a_4 = np.dot(Darray_N,barray)
        Xarray = a_3 + a_4

        count += 1
        
        print('第{}次'.format(count))
        print(Xarray)
def main():
    A=[[4,2,1],
        [2,5,-2],
        [1,-2,7]]
    B=[[23],[29],[0]]
    Jacob(A,B)

if __name__ == "__main__":
    main()

给你们看看效果

在这里插入图片描述
就到这儿吧,每次都是深夜写代码才写的下去,或者该改改习惯了
2020/2/24

可比迭代法和高斯-赛德尔迭代法都是用于求解线性方程组的数值方法。它们通常用于解决大规模稀疏矩阵的问题。 **可比迭代法**(也称直接解法)是一种基于方程组导数的迭代过程。假设有一个线性系统 \(Ax = b\),其中 \(A\) 是系数矩阵,\(x\) 是未知向量,\(b\) 是常数项。可比迭代法通过构建并求解 \(J(A)x^{(k+1)} = b - Ax^{(k)}\) 来迭代逼近解,其中 \(J(A)\) 是 \(A\)可比矩阵(即对 \(A\) 按元素求导后的矩阵)。每一步迭代都要求计算可比矩阵乘以当前猜测值,这在矩阵非常大或非对角占优时效率较低。 **高斯-赛德尔迭代法**(Gauss-Seidel method)也是一种迭代求解线性方程组的方法,但它采用分块的方式更新每个变量。算法每次只考虑部分已知的变量值来更新下一个变量,顺序通常是自左到右、自上而下。高斯-赛德尔通常适用于对角占优矩阵,因为它在每个步骤中使用了更精确的信息。 以下是简单的Python代码示例(仅适用于一维情况,实际应用需处理多维数组): ```python import numpy as np def jacobian_iterate(A, b, x0, tolerance=1e-6): def jacobi(A, x): return A @ x x = x0.copy() delta = float('inf') while delta > tolerance: old_x = x x = jacobi(A, (b - A @ x) / A.diagonal()) delta = np.linalg.norm(x - old_x) return x def gauss_seidel(A, b, x0, tolerance=1e-6): n = len(b) for i in range(n): if i == 0: for k in range(i + 1, n): b[i] -= A[i, k] * x0[k] else: for k in range(i): b[i] -= A[i, k] * x0[k] x0[i] = (b[i] - sum(A[i, j] * x0[j] for j in range(i))) / A[i, i] return x0 # 使用示例: A = np.array([[4, 1], [1, 3]]) b = np.array([5, 7]) x0 = np.zeros_like(b) jacobi_solution = jacobian_iterate(A, b, x0) gs_solution = gauss_seidel(A, b, x0) print("可比迭代法结果:", jacobi_solution) print("高斯-赛德尔迭代法结果:", gs_solution) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值