在当今数据驱动的世界中,数据科学家和分析师面临着一个重要的挑战:如何将非结构化的文本查询转换为结构化的 SQL 查询,以便从庞大的数据库中提取有用的信息。这一任务不仅需要对数据库架构的深刻理解,还需要灵活运用自然语言处理技术。本文将深入探讨如何构建一个端到端的文本到 SQL 的管道,使用金融数据为基础,帮助用户从复杂的数据库中提取有价值的信息。
🎯 教程的目标
本教程的主要目标是构建一个从头开始的文本到 SQL 的管道。我们将参考 Llama Index 的视频教程,并结合我们自己的数据集,通过从数据抓取、构建 SQLite 数据库到使用 DSPy 签名实现文本到 SQL 的管道,我们将一步步展示这一过程。我们将使用 Llama Index 的查询管道作为灵感来源。
📊 数据集概述
为了实现我们的目标,我们将使用以下数据集,数据集包含了来自不同地区的多种金融指标,如 WACC、税率、EBITDA 等。具体来说,我们的数据集覆盖了以下多个地区:
- 美国
- 欧洲
- 日