人工智能(AI)的进步正在重塑我们对“思考”的理解。无论是人类在面对复杂数学问题时的冥想,还是大型语言模型(LLM)通过链式推理(Chain-of-Thought, CoT)逐步解决问题,思考时间都成为提升决策质量的关键变量。测试时计算(test-time compute)——即模型在推理时投入的计算资源——为AI提供了类似人类“慢思考”的能力,显著提升了其在数学、编码和逻辑推理等任务中的表现。本文将深入探讨测试时计算的机制、链式推理的魔力,以及如何通过优化“思考时间”让AI更接近人类智慧的精髓。
🧠 人类与AI的思考共鸣
想象你正面对一道棘手的数学题:12345 × 56789 = ?
。你的第一反应可能是抓起笔和纸,逐步拆解计算,而不是立刻喊出答案。人类在面对复杂问题时,往往需要时间来分析、反思,甚至犯错后纠正。这种“慢思考”(System 2)与快速、直观的“快思考”(System 1)形成鲜明对比,正如心理学家丹尼尔·卡尼曼在《思考,快与慢》中所述。AI的测试时计算正是对人类慢思考的模拟:通过分配更多计算资源,模型得以在生成答案前进行更深入的推理。
测试时计算的核心思想源于2016年Alex Graves提出的“自适应计算时间”&#x