高偏差(Bias)Vs.高方差(Variance)- 学习曲线

@[TOC]高偏差(Bias)Vs.高方差(Variance)- 学习曲线

*这是一个学习总结,原文地址:https://blog.csdn.net/hertzcat/article/details/80035330
如下图,横坐标m为学习样本的数量,纵坐标为模型的误差,Jcv为交叉雅正的误差,Jtrain为训练集内的误差。
在这里插入图片描述
下图为一个高偏差情况(Bias),此时随着训练集数量的上升,误差还是比较大,意味着样本数量不会带来误差的减小,此时需要重新审视特征,让模型更加复杂,或者更改算法。
在这里插入图片描述
下图为一个高方差情况(Variance),此时随着训练集数量的上升,Jcv和Jtrain之间的准确率相差任然非常大,此时需要进一步提升训练集数量。当然,降低模型复杂度,删减特征也可以解决这个问题。
在这里插入图片描述
这是一篇个人总结,如果有不准确的地方还希望多多指出,谢谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值