@[TOC]高偏差(Bias)Vs.高方差(Variance)- 学习曲线
*这是一个学习总结,原文地址:https://blog.csdn.net/hertzcat/article/details/80035330
如下图,横坐标m为学习样本的数量,纵坐标为模型的误差,Jcv为交叉雅正的误差,Jtrain为训练集内的误差。
下图为一个高偏差情况(Bias),此时随着训练集数量的上升,误差还是比较大,意味着样本数量不会带来误差的减小,此时需要重新审视特征,让模型更加复杂,或者更改算法。
下图为一个高方差情况(Variance),此时随着训练集数量的上升,Jcv和Jtrain之间的准确率相差任然非常大,此时需要进一步提升训练集数量。当然,降低模型复杂度,删减特征也可以解决这个问题。
这是一篇个人总结,如果有不准确的地方还希望多多指出,谢谢