大语言模型相关
文章平均质量分 83
就是一顿骚操作
我怎么这么好看,哈哈哈
展开
-
大模型文本分类任务——提示词优化建议
在自然语言处理(NLP)领域,大型模型已展现出卓越的性能,涵盖了包括判别式任务和生成式任务在内的多种传统NLP任务。尽管基础NLP大模型的表现已相当出色,但在特定工业领域或场景中,对准确率的要求可能更为严苛。当然,如果上述建议仍未能满足要求,我们可以在后期对错误案例进行单独分析,或者切换至符合条件的其他大型模型。这两种方案适用于不同的场景:当场景对准确率的要求极高,且领域知识包含大量专业术语时,进行模型微调是必要的;二、明确指令要求,不仅要清晰地表述期望大模型执行的任务,还需指示其判断和思考的过程及依据。原创 2024-09-18 15:57:34 · 387 阅读 · 0 评论 -
ElasticSearch的python api以及dev tool方式的基本操作
如果没有额外的安全验证,需要指定的内容包括:集群ip地址(list类型),端口号(每个节点的端口号可能不同,这里是字符串,代表所有节点的端口号是一样的),用户名,密码。如果你的Elasticsearch集群启用了安全性功能,你可能需要确保你的Kibana实例已经使用具有足够权限的用户进行了认证,以便能够执行删除索引的操作。es的查询方式很灵活,可以单独写一篇文章, 就先不列在这里面了,它可以模糊查询,可以计算文档距离,也可以精确查询,可以说非常丰富灵活。在你的Web浏览器中打开Kibana的Web界面。原创 2024-05-11 17:00:34 · 1141 阅读 · 5 评论 -
stable diffusion WebUi本地安装
Stable Diffusion是一种先进的文本到图像的生成模型,它可以根据给定的文本输入生成高度逼真的图像。Stable Diffusion模型因其高效性和灵活性,在AI图像生成领域引起了广泛关注,并在实际应用中展示了其强大的能力。随着技术的不断发展,Stable Diffusion预计将在更多领域发挥重要作用,推动机器学习和深度学习的进步。原创 2024-05-11 14:10:58 · 536 阅读 · 1 评论 -
glm2大语言模型服务环境搭建
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。原创 2024-04-03 16:22:22 · 1083 阅读 · 0 评论 -
GLM论文研读
目前已经发展出多种预训练模型,包括自编码模型(如BERT)、自回归模型(如GPT)和编码器-解码器模型(如T5)。然而,这些模型并未在自然语言理解(NLU)、无条件生成和条件生成这三类任务中都达到最佳表现。为此,我们提出了一个基于自回归式空格填充的通用模型(GLM)以应对这一挑战。GLM通过加入二维位置编码,并允许以任意顺序预测片段,优化了空格填充预训练,这使得其在NLU任务上的性能优于BERT和T5。同时,GLM可以通过调整空白数量和长度,针对不同类型的任务进行预训练。原创 2024-04-02 11:16:35 · 1997 阅读 · 3 评论 -
昇腾glm3大模型lora微调及推理
ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:更强大的基础模型,更完整的功能支持,更全面的开源序列。原创 2024-03-29 17:31:26 · 1639 阅读 · 1 评论 -
基于Pytorch+昇腾NPU部署baichuan2-7B大模型
Baichuan 2 是百川智能推出的新一代开源大语言模型,采用2.6 万亿Tokens 的高质量语料训练。Baichuan 2 在多个权威的中文、英文和多语言的通用、领域 benchmark 上取得同尺寸最佳的效果。它基于 Transformer 结构,在大约1.2万亿 tokens 上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。项目地址预训练模型modelscope硬件要求:NPU:8 x Ascend NPUsModelLink旨在为华为昇腾芯片。原创 2024-04-02 11:12:23 · 3656 阅读 · 14 评论