一、模型介绍
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:
更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。对于更长的上下文,我们发布了 ChatGLM2-6B-32K 模型。LongBench 的测评结果表明,在等量级的开源模型中,ChatGLM2-6B-32K 有着较为明显的竞争优势。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。
二、基本环境介绍
芯片:910a
操作系统:openEULER
三、环境搭建
1、下载与芯片型号版本相应的驱动
加速卡的话是910的包:
2)修改权限:
chmod +x Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run
3)安装驱动:
./Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run --full --install-for-all
4) 重启:
Reboot
重启后可以查看驱动信息:npu-smi info
2、安装依赖库
# 安装gcc,make依赖软件等。
yum install -y gcc g++ make cmake unzip pciutils net-tools gfortran
sudo yum install openssl-devel
sudo yum install libffi-devel
sudo yum install zlib-devel
sudo yum install sqlite-devel
sudo yum install blas-devel
sudo yum install blas
3、安装python
使用python源码安装:
到python官网下载源码文件:Python Source Releases | Python.org
这里我们下载python3.8.10
https://www.python.org/ftp/python/3.8.10/Python-3.8.10.tgz
https://www.python.org/ftp/python/3.9.4/Python-3.9.4.tgz
下载成功后,安装:
tar -zxvf Python-3.9.4.tgz
cd Python-3.9.4
./configure --prefix=/usr/local/python3.8.10 --enable-optimizations --enable-shared --with-ssl
make&make install
如果因为环境问题安装失败需要重新安装的话,务必执行一下
make clean 删除一下缓存
ln -s /usr/local/python3.9.4/bin/python3.9 /u