Transformer模型:Position Embedding实现

在自然语言处理(NLP)中,Transformer 模型是一个非常重要的里程碑,它通过自注意力(self-attention)机制极大地提高了处理序列数据的能力。在 Transformer 模型中,词嵌入(Word Embedding)是输入层的关键部分,负责将离散的单词转换成连续的向量表示,以便模型能够理解和处理。然而,您提到的“Postin Embedding”可能是一个笔误,通常我们讨论的是“Position Embedding”(位置嵌入),它用于给模型提供单词在句子中的位置信息,因为 Transformer 模型本身是位置无关的。

以下是一个基于 PyTorch 的简单 Transformer 模型实现,包括词嵌入和位置嵌入的详细代码示例。这个示例将展示如何构建 Transformer 的一个基本层(包括多头自注意力机制和前馈网络),并加入位置嵌入。

import torch  
import torch.nn as nn  
import torch.nn.functional as F  
  
class PositionalEncoding(nn.Module):  
    def __init__(self, d_model, max_len=5000):  
        super(PositionalEncoding, self).__init__()  
        # 创建位置编码矩阵  
        pe = torch.zeros(max_len, d_model)  
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  
        pe[:, 0::2] = torch.sin(position * div_term)  
        pe[:, 1::2] = torch.cos(position * div_term)  
        pe = pe.unsqueeze(0).transpose(0, 1)  
        self.register_buffer('pe', pe)  
  
    def forward(self, x):  
        # 将位置编码加到词嵌入上  
        return x + self.pe[:x.size(0), :]  
  
class TransformerEncoderLayer(nn.Module):  
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):  
        super(TransformerEncoderLayer, self).__init__()  
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)  
        self.linear1 = nn.Linear(d_model, dim_feedforward)  
        self.dropout = nn.Dropout(dropout)  
        self.linear2 = nn.Linear(dim_feedforward, d_model)  
  
        self.norm1 = nn.LayerNorm(d_model)  
        self.norm2 = nn.LayerNorm(d_model)  
        self.dropout1 = nn.Dropout(dropout)  
        self.dropout2 = nn.Dropout(dropout)  
  
        self.activation = nn.ReLU()  
  
    def forward(self, src, src_mask=None, src_key_padding_mask=None):  
        src2 = self.norm1(src)  
        src2 = self.dropout1(src2)  
        src_out, attn_output_weights, attn_output_mask = self.self_attn(src2, src2, src2, attn_mask=src_mask,  
                                                                      key_padding_mask=src_key_padding_mask)  
        src = src + self.dropout2(src_out)  
        src2 = self.norm2(src)  
        src2 = self.dropout(src2)  
        src = self.linear2(self.dropout(self.activation(self.linear1(src2))))  
        src = src + src2  
        return src, attn_output_weights  
  
class TransformerEncoder(nn.Module):  
    def __init__(self, encoder_layer, num_layers, d_model, vocab_size, max_len=5000):  
        super(TransformerEncoder, self).__init__()  
        self.layer = nn.ModuleList([encoder_layer for _ in range(num_layers)])  
        self.src_emb = nn.Embedding(vocab_size, d_model)  
        self.pos_encoder = PositionalEncoding(d_model, max_len)  
  
    def forward(self, src):  
        src = self.src_emb(src) * math.sqrt(self.d_model)  # scale embedding by sqrt(d_model)  
        src = self.pos_encoder(src)  
        output = src  
        attn = None  
  
        for encoder in self.layer:  
            output, attn = encoder(output)  
  
        return output, attn  
  
# 示例参数  
vocab_size = 10000  # 假设词汇表大小为 10000  
d_model = 512        # 嵌入维度  
nhead = 8            # 多头注意力机制中的头数  
num_layers = 6       # 编码器层数  
  
# 创建 TransformerEncoder  
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead)  
transformer_encoder = TransformerEncoder(encoder_layer, num_layers, d_model, vocab_size)  
  
# 示例输入(假设已经有一些经过编码的索引)  
src = torch.tensor([[1, 2, 3, 4, 5, 0, 0],  # 每个句子的索引,用 0 填充到相同长度  
                     [6, 7, 8, 9, 10, 0, 0]], dtype=torch.long)  
  
# 传递输入到 Transformer 编码器  
output, attn = transformer_encoder(src)  
  
print("Encoder output shape:", output.shape)  # 应该是 [batch_size, seq_len, d_model]  
print("Attention weights shape (if you need them):", attn.shape)  # 注意 attn 可能在第一层之后才是有效的  
  
# 注意:attn 的输出在这里可能不直接显示,因为它依赖于具体的层实现和是否传递了 mask。  
# 在实际应用中,你可能需要更复杂的逻辑来处理 mask 或直接忽略 attn 的输出。

以上代码实现了一个简单的 Transformer 编码器,包括词嵌入、位置嵌入、多头自注意力机制和前馈网络。在 TransformerEncoderLayer 类中,我们定义了一个编码器层,它包含了自注意力机制、层归一化、前馈网络以及相应的dropout层。TransformerEncoder 类则将这些层堆叠起来,并添加了词嵌入和位置嵌入。

请注意,在实际应用中,你可能需要添加一些额外的功能,比如掩码(mask)来处理填充的零或进行序列到序列的任务(例如翻译),以及添加解码器部分以构建完整的 Transformer 模型。此外,上述代码没有处理变长输入序列的掩码,这在实际应用中是很重要的,因为它可以防止模型关注到填充的零。

原创作者: TS86 转载于: https://www.cnblogs.com/TS86/p/18378541
### 回答1: Transformer位置编码是一种用于在Transformer模型中对输入序列中每个位置进行编码的技术。它通过将每个位置映射到一个唯一的向量表示来实现。这些向量表示被添加到输入嵌入中,以便Transformer模型可以更好地理解输入序列中不同位置之间的关系。Transformer位置编码通常使用正弦和余弦函数来生成向量表示,这些函数具有周期性和可重复性,可以帮助模型更好地处理输入序列中的周期性模式。 ### 回答2: Transformer是一种用于处理序列数据的神经网络模型,它在自然语言处理领域的应用非常广泛。Transformers中的位置编码(position encoding)是一个非常重要的概念,它是该模型在处理文本序列时能够保留位置信息的关键。 位置编码是通过一种特殊的方式将每个输入序列中的单词位置信息嵌入到向量空间中。在Transformer中,位置编码是通过一个矩阵生成的,这个矩阵的维度大小为(序列长度 × 向量维度),其中序列长度是输入序列中单词的数量,而向量维度则是每个位置编码向量的维度。这个矩阵中的每一行都代表着一个位置编码向量,在输入序列中,每个单词都对应一个位置编码向量,通过将这个位置编码向量加入到单词向量中,模型可以在处理文本序列时保留单词的位置信息。 通常,位置编码向量是通过计算一个一组三角函数的结果来获得的。这个函数的参数是位置和索引,位置指的是在序列中的位置,而索引则是维度,它可以用来控制位置编码向量的不同特征,例如奇偶性和周期性等等。在计算这个函数的结果时,位置的信息被嵌入到向量中,并且这个位置编码向量会通过加权和的形式被嵌入到输入向量中,从而影响模型的输出。 总之,Transformer中的位置编码是非常重要的一步,它可以帮助模型保存输入序列中的位置信息,从而更好地处理序列数据。位置编码向量是通过一个特殊的函数计算得出的,它是由位置信息和索引信息组成的,通过加入到输入向量中,使得输入的向量不仅包含单词本身的信息,同时也包含了位置信息。 ### 回答3: Transformer 的编码器和解码器在进行自注意力机制计算时,需要为每一个输入或输出单词分配一个位置编码,以便模型在计算注意力时能够准确反映文本中的语序信息。这个位置编码的目的是为了能够让模型能够明确区分不同位置的单词,从而保留这些单词在文本中的相对位置关系。 位置编码是作为输入到模型中的一个向量,其维度和单词的嵌入向量的维度一致。在Transformer中,提出了两种位置编码的方式: 基于正弦函数和基于学习的方式。 基于正弦函数的位置编码,其计算公式如下: $PE_{pos,2i}=sin(\frac{pos}{10000^{2i/d_{model}}})$ $PE_{pos,2i+1}=cos(\frac{pos}{10000^{2i/d_{model}}})$ 其中,$pos$表示单词的位置,$i$和$d_{model}$表示位置向量的对应维度。 基于学习的方式,就是通过训练来学得位置编码,这种方式可以在避免手工编码时引入的误差的同时,也可以更好地适应特定任务的要求。 无论使用哪种方式,位置编码的作用都是为了让模型能够区分不同位置的单词以及它们在文本中的相对位置关系,从而更好地捕捉到文本中的序列信息,提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值