自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(606)
  • 收藏
  • 关注

原创 基于可变形注意力与邻域特征聚合的多对比度图像超分辨率方法(DANCE):在解剖学和代谢MRI中的应用/文献速递-基于人工智能的医学影像技术

对于IXI数据集的错位病例,所有基线方法的SR性能均显著下降,而DANCE表现出最先进的性能和显著优越性,其输出具有最高的整体质量、最清晰的解剖细节和最小的重建损失。鉴于该方法理想的综合性能、良好的鲁棒性和适度的计算复杂度,其在临床应用中具有巨大潜力。本文提出了一种名为DANCE的深度学习方法,通过可变形注意力估计并消除多对比度MRI图像间的跨模态错位,同时采用邻域特征聚合机制,在IXI、FastMRI和内部APTW数据集上实现了优于现有方法的超分辨率性能和良好的错位鲁棒性,展现了重要的临床应用潜力。

2026-01-30 16:37:17 114

原创 多视图深度学习乳腺X线摄影分类技术:图和Transformer架构的探究/文献速递-基于人工智能的医学影像技术

在CSAW数据集上的大量实验表明,尽管Transformer架构优于其他架构,但不同的归纳偏置导致了互补的优势和劣势,每种架构对不同的征象和乳腺X线摄影特征敏感。本文旨在通过扩展Transformer和图卷积网络以处理四种视图,并引入新的Transformer架构与同侧和对侧跨视图注意力机制,在一个可比较的弱监督设置下,从性能和局部-全局特征整合角度全面评估这些多视图架构,以期发现不同架构的互补性。首先,对于每一侧(L-CC和L-MLO,R-CC和R-MLO),执行成对注意力操作,然后加到各自的视图中。

2026-01-29 16:13:38 419

原创 低剂量计算机断层扫描感知图像质量评估/文献速递-基于人工智能的医学影像技术

Team Epoch的算法在此数据集上表现出色,获得了最高的综合评分。与PSNR和SSIM在Mayo Clinic和NCC数据集之间没有显著分数差异相比,提交的算法显示出明显的差异,这可能因为PSNR和SSIM是依赖参考图像的全参考IQA方法,而提交的算法是免参考IQA方法。本文组织了首届低剂量CT感知图像质量评估挑战赛,发布了首个由六位放射科医生标注的开源LDCT IQA数据集,并全面分析了多种深度学习算法的性能,展示了免参考IQA方法超越传统全参考方法的潜力,为CT图像质量评估研究奠定了基础。

2026-01-28 15:23:48 525

原创 LoViT:用于手术阶段识别的长视频Transformer/文献速递-基于人工智能的医学影像技术

局部时序特征聚合器(L-Trans)由两个级联的L-Trans模块组成(Ls-Trans和Ll-Trans),用于在不同尺度上提取局部细粒度时序信息,每个模块通过融合模块(包含多层自注意力编码器和带有交叉注意力的解码器)处理两个分支输入(如图4所示)。本文提出LoViT,一个用于在线手术阶段识别的两阶段Transformer模型,通过开发时序丰富的空间特征提取器、多尺度时序聚合器和阶段转换感知监督机制,有效解决了长视频手术识别中的视觉歧义和长时序依赖问题,在多个数据集上显著超越现有SOTA方法。

2026-01-27 17:38:51 371

原创 学习通过皮层发育连续性迁移实现全生命周期脑解剖对应/文献速递-基于人工智能的医学影像技术

2026.1.26本文提出了一种新颖的皮层发育连续性(CDC)迁移学习框架,通过利用大脑不同年龄组间的发育连续性,在数据量最大的年龄组(成人组)上训练模型,并沿皮层发育轨迹逐步迁移到其他年龄组,有效解决了皮层折叠模式个体差异大、不同神经发育阶段异质性强以及早期发育阶段数据稀缺等挑战,实现了跨生命周期大脑精细解剖结构的鲁棒对应,并能有效捕捉群体特异性模式和保留个体差异。Title题目01Learning lifespan brain anatomical correspondence via cortical

2026-01-26 17:57:44 567

原创 基于合成错误增强的医学图像分割标签精修网络/文献速递-基于人工智能的医学影像技术

利用这些带有合成错误的分割和原始图像,训练标签精修网络来纠正错误并改进初始分割。本文提出的标签精修方法通过生成逼真的合成错误样本来训练网络纠正初始分割中的结构错误,并在气道和脑血管分割任务中展现了优越的性能,尤其在提高完整性和纠正连通性错误方面具有临床重要性,有助于早期疾病诊断和生物标志物测量。本文提出一种新颖的标签精修网络,通过生成逼真的合成结构错误并结合标签外观模拟网络,隐式编码标签结构信息,显著改善了气道和脑血管等树状结构医学图像的分割精度和完整性,尤其在纠正不连续性和缺失末端分支方面表现出色。

2026-01-23 16:44:01 879

原创 基于先验对抗生成网络的眶爆裂性骨折自动重建智能手术规划/文献速递-基于人工智能的医学影像技术

所提出的网络实现了92.35%的DSC、85.86%的IOU、92.01%的精确度、92.75%的敏感性、0.11毫米的ASD和0.59毫米的95HD,展示了准确的自动重建效果。实验表明,所提出的重建网络实现了骨折眶壁的快速准确自动重建,超越了多个SOTA网络的性能。本文提出了一种基于先验对抗生成网络(GAN)的智能手术规划方法,通过对称先验解剖知识(SPAK)指导眶爆裂性骨折(OBF)的自动重建,显著提高了重建精度和效率,并在临床应用中得到验证,将规划时间从25分钟缩短至不足2分钟。

2026-01-22 17:02:35 465

原创 IGUANe:一种用于脑部MRI多中心协调的3D通用CycleGAN模型/文献速递-基于人工智能的医学影像技术

评估包括使用旅行受试者对MR图像的转换、领域内MR图像对间距离的保留、与年龄和阿尔茨海默病(AD)相关的体积模式的演变,以及在年龄回归和患者分类任务中的表现。与其他协调和标准化方法的比较表明,IGUANe能更好地保留MR图像中的个体信息,并更适合维持和强化与年龄和AD相关的变异性。本研究提出IGUANe,一个基于CycleGAN扩展的3D模型,通过多对一架构实现MRI图像在多中心数据间的泛化协调,有效处理未见扫描仪数据,并在保持生物信息的同时,显著提升了脑龄预测、AD分类及灰质萎缩模式的识别准确性。

2026-01-21 17:38:46 728

原创 有全局感受野的傅里叶卷积块用于MRI重建/文献速递-基于人工智能的医学影像技术

此外,为了有效训练具有大感受野的网络,提出了一种重参数化训练策略:首先使用传统3x3卷积核训练网络以捕获局部模式,然后将深度卷积(DW)层中的3x3卷积核重参数化为傅里叶卷积,最后微调网络以扩展到全局感受野。本文提出一种用于MRI重建的傅里叶卷积块(FCB),通过将空间域卷积转换为频域操作,实现了全局感受野和低计算复杂度,并在多种CNN架构上展现出优于现有SOTA方法和Vision Transformer的重建性能,有效抑制了伪影并恢复了图像细节。F-UNet的ERF覆盖了更大的区域,接近采样PSF。

2026-01-20 16:59:27 651

原创 立结合解剖学知识的潜在空间建模下的群体水平脑结构连接性/文献速递-基于人工智能的医学影像技术

通过广泛模拟评估了模型的性能,并将其应用于研究阿尔茨海默病(AD)受试者和健康对照中按性别分层的脑结构连接性,结合节点解剖学属性(体积、厚度和面积),该方法在样本外结构连接性预测上表现出卓越性能,并识别出有意义的AD性别特异性网络神经生物标志物。脑结构连接性是理解大脑解剖网络组织的关键。为了解决这些挑战,本文提出了属性信息脑连接性(ABC)模型,该模型借鉴生成式潜在空间网络模型,旨在同时估计群体水平连接性并纳入脑区的解剖学属性,实现两种信息模态的相互调节和互惠互利,以提高估计的精度和可解释性。

2026-01-19 16:53:32 843

原创 低场强下胎儿身体器官T2*弛豫测定(FOREST)/文献速递-基于人工智能的医学影像技术

2026.1.15本研究开发并验证了FOREST,一个用于低场MRI下胎儿身体十个主要器官T2*弛豫自动测量的端到端流程,并生成了17-40周胎龄的正常T2*生长曲线,证明了低场胎儿MRI在高级临床分析中的可行性。Title题目01Fetal body organ T2* relaxometry at low field strength (FOREST)低场强下胎儿身体器官T2*弛豫测定(FOREST) 文献速递介绍02胎儿MRI是产前成像的重要工具,尤其在补充超声诊断复杂胎儿异常方面。T2*映射作为一种

2026-01-15 18:03:37 795

原创 DeepResBat: 考虑协变量分布差异的深度残差批次协调方法/文献速递-基于人工智能的医学影像技术

2026.1.14本研究提出了DeepResBat,一种新型的深度学习批次效应协调方法,通过显式处理协变量分布差异来有效去除数据集中不必要的变异,同时增强生物学效应,并在多项评估中优于传统和现有深度学习方法,且避免了虚假关联。Title题目01DeepResBat: Deep residual batch harmonization accounting for covariate distribution differencesDeepResBat: 考虑协变量分布差异的深度残差批次协调方法 文献速递介绍

2026-01-14 17:53:51 518

原创 用于多模态MRI重建的带空间配准的深度展开网络/文献速递-基于人工智能的医学影像技术

针对这些限制,本文提出了一个带空间配准的深度展开网络(DUN-SA),该网络将空间配准任务嵌入到重建过程中,提出了一种对齐的跨模态先验项,并设计了相应的优化算法和可解释的网络模块,旨在克服模态间错位问题,同时利用模态间和模态内先验,实现更优的重建效果。(d)显示了DUN-SA的结果。本文提出了一种名为DUN-SA的深度展开网络,通过将空间配准任务自适应地整合到多模态MRI重建过程中,并引入对齐的跨模态先验,有效解决了模态间错位和传统方法可解释性差的问题,实现了更优的重建性能和对配准误差的鲁棒性。

2026-01-13 16:52:15 542

原创 用于多模态MRI重建的带空间配准的深度展开网络/文献速递-基于人工智能的医学影像技术

针对这些限制,本文提出了一个带空间配准的深度展开网络(DUN-SA),该网络将空间配准任务嵌入到重建过程中,提出了一种对齐的跨模态先验项,并设计了相应的优化算法和可解释的网络模块,旨在克服模态间错位问题,同时利用模态间和模态内先验,实现更优的重建效果。(d)显示了DUN-SA的结果。本文提出了一种名为DUN-SA的深度展开网络,通过将空间配准任务自适应地整合到多模态MRI重建过程中,并引入对齐的跨模态先验,有效解决了模态间错位和传统方法可解释性差的问题,实现了更优的重建性能和对配准误差的鲁棒性。

2026-01-13 16:51:08 812

原创 DACG:用于放射学报告生成的双重注意力和上下文引导模型/文献速递-基于人工智能的医学影像技术

案例研究进一步验证了DACG的临床效率和实用性,其生成的报告包含了几乎所有必要的临床词汇,且获得了专业放射科医生的认可,有助于显著减轻报告撰写负担,提高效率。然而,论文也指出了局限性:未来的工作可以探索更多样化的医学图像特征提取视角,不仅限于位置和通道,并研究更有效的特征融合方法。本文提出DACG模型,通过双重注意力模块增强医学图像特征提取,并利用上下文引导模块监督长文本生成,有效缓解视觉与文本数据偏差及长文本生成难题,在IU X-ray和MIMIC-CXR数据集上取得了最先进的放射学报告自动生成性能。

2026-01-12 17:39:41 511

原创 用于体素医学图像分割的跨视图差异-依赖网络/文献速递-基于人工智能的医学影像技术

此外,它还包括:(a) 一个用于多视图切片表示学习的切片编码器(绿色),(b) 一个用于视图特定表示学习的差异感知形态强化(DaMR)模块,以及(c) 一个用于多视图表示融合的依赖感知信息聚合(DaIA)模块。该研究提出了一种名为CvDd-Net的体积医学图像分割模型,通过利用多视图切片先验,并引入差异感知形态强化(DaMR)和依赖感知信息聚合(DaIA)模块来有效捕获视图间的差异和依赖性,从而显著提升了在全监督和半监督任务中对小目标分割的鲁棒性和准确性,尤其在数据有限的情况下表现出色。

2026-01-09 18:06:42 787

原创 临床知识引导的混合分类网络用于X射线图像中牙周疾病的自动诊断/文献速递-基于人工智能的医学影像技术

二是提出了牙齿层面和患者层面的混合分类分支,并融入临床知识指导的诊断策略,使其与牙医的标准诊断程序一致,提供理论和实践兼具的诊断。近期方法尝试通过估计X射线图像中的骨丢失来分类牙周疾病,但这些方法的监督信号通常是手工标注的放射学标记,这与临床探诊测量结果的金标准缺乏一致性,可能导致测量不准确和分类不稳定。本文提出HC-Net混合分类框架,首次以真实临床探诊结果作为金标准,结合牙齿和患者层面信息,并融入临床诊断知识,实现了全景X射线图像中牙周疾病的自动精准诊断,显著提高了诊断的敏感性和准确性。

2026-01-08 15:55:43 807

原创 超越强标签:基于高斯伪标签的弱监督学习用于非造影CT中椭圆形血管结构的分割/文献速递-基于人工智能的医学影像技术

2026.1.7本文提出一种基于高斯伪标签的弱监督学习框架,用于非造影CT中椭圆形血管结构(如腹主动脉)的分割,通过高效标注标准和新的损失函数组合显著减少了标注时间并提升了模型性能,使其在不同数据集和模型中均表现优越,并支持外部数据整合,具有广泛应用潜力。Title题目01Beyond strong labels: Weakly-supervised learning based on Gaussian pseudo labels for the segmentation of ellipse-like v

2026-01-07 14:46:41 684

原创 腹腔镜肝切除术中增强现实预术中图像融合方法的客观比较:来自MICCAI2022挑战赛/文献速递-基于人工智能的医学影像技术

2026.1.6本文介绍了MICCAI 2022 P2ILF挑战赛,旨在通过评估参赛团队在肝脏2D/3D解剖地标自动分割和预术中3D-2D图像配准方面的表现,推动腹腔镜肝切除术中增强现实技术的发展,并基于结果提出未来研究方向。Title题目01An objective comparison of methods for augmented reality in laparoscopic liver resection by preoperative-to-intraoperative image fusio

2026-01-06 17:54:59 849

原创 一种用于组织病理学图像分割与合成的鲁棒流水线/文献速递-基于人工智能的医学影像技术

2026.1.5本文提出PathoSeg模型,这是一种结合HRNet编码器和UNet++解码器的病理图像分割网络,并引入PathopixGAN生成合成数据以解决数据不平衡问题,最终在乳腺癌、肝脏脂肪变性和前列腺癌腺体分割任务上优于现有技术并提升了模型泛化能力。Title题目01A robust image segmentation and synthesis pipeline for histopathology一种用于组织病理学图像分割与合成的鲁棒流水线 文献速递介绍02组织病理学检查是病理诊断的临床金标

2026-01-05 17:36:42 556

原创 一种用于超分辨率磁共振波谱成像的基于流的截断去噪扩散模型/文献速递-基于人工智能的医学影像技术

2025.12.31本文提出一种基于流的截断去噪扩散模型(FTDDM),通过截断扩散链并结合流网络估计截断点处的噪声图像,实现了高性能、采样高效的多尺度超分辨率磁共振波谱成像,并通过神经放射科医生的评估证实了其临床优势和可调锐度功能。Title题目01A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging一种用于超分辨率磁共振波谱成像的基于流的

2025-12-31 16:25:58 550

原创 一种基于交叉注意力深度学习方法,利用4D CTP成像和临床元数据预测卒中功能预后/文献速递-基于人工智能的医学影像技术

在对70名接受血管内机械取栓的AIS患者数据集的评估中,所提出的模型达到了0.77的准确率(ACC),优于传统的晚期融合策略(ACC = 0.73)以及基于单一4D CTP(ACC = 0.61)或临床元数据(ACC = 0.71)的模型。本研究首次结合完整的时空4D CTP影像和临床元数据来预测急性缺血性卒中患者的功能预后,并提出了一种新颖的基于交叉注意力机制的中间融合策略,旨在更有效地捕捉模态间复杂关系,实验证明该方法优于单一模态和传统晚期融合方法。图3.晚期融合(设置1)基线模型的概述。

2025-12-30 16:28:43 992

原创 基于小波分析和记忆库的超声长视频时空细节追踪-文献速递-医疗影像分割与目标检测最新技术

2025.12.29这篇文章发表于《Medical Image Analysis》期刊(2026 年第 109 卷),由北京航空航天大学学者撰写,聚焦超声长视频的目标分割与追踪问题,提出一种基于小波分析和记忆库的融合网络 MWNet。Title题目01Tracking spatial temporal details in ultrasound long video via wavelet analysis and memory bank基于小波分析和记忆库的超声长视频时空细节追踪 文献速递介绍02医学超声

2025-12-29 17:08:25 954

原创 医学生图像分割的测试时生成增强方法文献速递-医疗影像分割与目标检测最新技术

在涵盖九个数据集的三个不同分割任务上的广泛实验表明,TTGA不仅显著提高了分割准确性(相对于基线DSC增益0.1%-2.3%),还能提供像素级错误估计(相对于基线DSC增益1.1%-29.0%),提升了模型在复杂医学场景中的鲁棒性和可靠性。为解决这些限制,本研究引入了测试时生成增强(TTGA),一种利用领域微调生成模型在推理时生成多样化、上下文相关增强的新策略,旨在提升分割精度和不确定性估计,其核心是掩膜空文本反演技术和双重去噪路径。在增强生成阶段,利用语义和区域信息引导的空文本嵌入来生成一系列增强图像。

2025-12-26 16:48:30 961

原创 PISCO:用于改进动态MRI神经隐式k空间表示的自监督k空间正则化文献速递-医疗影像分割与目标检测最新技术

2025.12.25这篇文章发表于《Medical Image Analysis》期刊(2026 年第 109 卷),由慕尼黑工业大学、智利天主教大学等机构学者联合撰写,聚焦动态磁共振成像(MRI)的快速重建问题,提出一种基于自监督 k 空间正则化的神经隐式表示方法 PISCO。Title题目01PISCO: Self-supervised k-space regularization for improved neural implicit k-space representations of dynam

2025-12-25 17:27:41 724

原创 泛用型nnUNet脑血管周围间隙识别系统(PINGU)|文献速递-医疗影像分割与目标检测最新技术

在内部验证(5折交叉验证)中,PINGU在白质(WM)中的平均体素级Dice分数为0.50(标准差=0.15),在基底神经节(BG)中为0.54(0.10)。在外部验证(留一站点交叉验证)中,尽管未见过的站点数据上的Dice分数显著降低(WM体素级Dice为0.38,BG体素级Dice为0.36),但PINGU的性能仍远优于SHIVA-PVS(WM体素级Dice为0.18,BG体素级Dice为0.10)和WPSS(WM体素级Dice为0.30,BG体素级Dice为0.20),特别是在基底神经节区域。

2025-12-24 15:56:46 511

原创 MIRAGE:针对嘈杂环境鲁棒性的医学图像-文本预训练|文献速递-医疗影像分割与目标检测最新技术

在六项任务和14个数据集上的广泛实验表明,MIRAGE的性能优于现有先进方法,并具有强大的跨数据集泛化能力,同时为医学数据噪声估计提供了新见解。接着,提出基于最近邻(NN)的噪声估计方法,利用图像-文本对的NN文本嵌入(Qi)与配对文本(Ti)之间的语义距离,定义匹配成本函数Cij。为了防止训练后期过拟合噪声数据,引入自适应梯度平衡策略,根据样本的估计匹配得分(Sii)动态调整每个正样本对InfoNCE损失的贡献,并通过凸插值结合InfoNCE梯度和基于NN的梯度,确保在噪声环境下的稳定优化。

2025-12-23 16:17:57 956

原创 诊断文本引导的分层分类全玻片图像表征学习|文献速递-医疗影像分割与目标检测最新技术

受病理医生分层诊断策略和丰富文本描述的启发,本文将挑战性的病理多分类问题转化为具有二叉树结构的分层分类任务,并设计了名为PathTree的WSI分层表征学习方法。为此,本文引入了分层病理图像分类的概念,并提出了一种名为PathTree的表征学习方法。通过在三个具有挑战性的分层分类数据集(包括内部冷冻切片肺组织病变识别、公共前列腺癌分级评估和公共乳腺癌亚型分类)上进行的广泛实验,我们提出的PathTree方法始终优于现有最先进方法,并为更复杂的WSI分类问题提供了深度学习辅助解决方案的新视角。

2025-12-22 17:03:31 775

原创 D-EDL:用于鲁棒医学分布外检测的差异化证据深度学习|文献速递-医疗影像分割与目标检测最新技术

我们发现,当遇到数据不确定性高的样本时,EDL中的Kullback-Leibler (KL)散度倾向于抑制固有的模糊性,导致证据估计中出现过度惩罚效应,损害了模糊分布内(ID)病例与真实异常值之间的区分。为解决此问题,受临床鉴别诊断的启发,D-EDL提出差异化限制,设计了排除模块(ROM),仅排除最不可能的类别证据,并通过证据缩放来降低其影响,从而在保持低复杂度的同时,既能建模模糊性又避免证据无限增长。图4. 不同样本在 (a) 带有KL的EDL 和 (b) 不带KL的EDL 中的证据估计图。

2025-12-19 17:08:57 350

原创 AGFS-Tractometry:一种新型图谱引导的精细尺度束测量方法,用于增强扩散MRI束描记术的沿束组统计比较|文献速递-医疗影像分割与目标检测最新技术

本方法通过将流线分配到解剖学上信息丰富的白质簇,能更好地评估每个束的潜在结构亚区,解决了现有方法在处理整个白质束时忽略其精细亚结构的问题,避免了AFQ的序数分块假设可能导致的不精确性以及BUAN的单中心线方法在束末端可能出现的异常分段。在合成数据集实验中,AGFS-Tractometry在检测具有已知组差异的局部白质区域方面表现出更高的准确性(ACC),优于AFQ和BUAN,尤其是在不同尺寸和位置的ROI上,其检测结果与真实区域的空间吻合度更高,误差更小。对于每个ROI,显示了检测到的显著区域的ACC。

2025-12-18 17:45:59 849

原创 SicTTA:医学图像分割的单图像持续测试时间适应|文献速递-文献分享

2025.12.17这篇文章发表于《Medical Image Analysis》期刊(2026 年第 108 卷),由电子科技大学、上海人工智能实验室等机构学者撰写,聚焦医学图像分割中的单图像持续测试时自适应问题。Title题目01SicTTA: Single image continual test time adaptation for medical image segmentationSicTTA:医学图像分割的单图像持续测试时间适应 文献速递介绍02深度学习模型在医学图像分割领域取得了显著进展,

2025-12-17 16:50:33 614

原创 低剂量CT金属伪影去除的提示引导多尺度自适应稀疏表示驱动网络|文献速递-文献分享

PMSRNet的核心组件包括:多尺度稀疏化框架,用于不同尺度的特征提取;在临床验证方面,模型在CTPelvic1K临床数据集上进行了评估,结果表明,尽管在模拟数据集上训练,PDuMSRNet在临床数据上也能有效减少金属伪影和噪声,并保留关键边缘信息,优于其他主流方法。对于下游分割任务,将PDuMSRNet的重建结果输入到Segment Anything Model (SAM) 中,与原始LDCT图像相比,重建结果能分割出更多清晰可辨的解剖结构,验证了该方法在促进诊断分析和治疗规划等关键下游应用中的有效性。

2025-12-16 16:50:21 730

原创 NIFA:基于噪声强度场感知网络的低剂量CT成像|文献速递-文献分享

此外,NIFS损失通过在降低整体噪声幅度的同时,明确保留原始CT图像的噪声功率谱特性,从而超越了传统的频域优化,确保去噪图像保持临床上真实的噪声纹理,适用于临床诊断。傅里叶域的噪声功率谱分析显示,NIFA方法显著降低了LDCT图像的噪声功率谱幅度,同时保持了噪声谱的模式和频率分布,没有明显的低频偏移。本文提出了一种结合CT成像物理和数据驱动范式的新模型架构和目标函数,将噪声建模为噪声强度场,通过分别处理高低强度信息来去噪,并引入噪声强度场相似性(NIFS)损失函数,以保留梯度信息和噪声模式。

2025-12-15 15:29:56 859

原创 HALO:一种用于任意低剂量PET图像重建的高频增强剂量感知扩散模型|文献速递-文献分享

对3D U-Net基线模型的剂量信息影响研究(表4)表明,结合注射剂量和估计有效剂量(剂量适应变体)的模型在PSNR和SSIM方面始终优于仅使用注射剂量或不使用剂量信息的模型,并具有更低的变化性,证明了有效剂量建模的价值。HALO设计了剂量适应(DA)模块来捕捉LPET图像中的有效剂量,并采用高频残差生成策略,通过预训练CNN恢复低频分量,扩散模型专注于预测高频残差,同时引入频率信息分离器(FIS)和高频调制器(HFM)以增强高频细节生成。DA模块的机制在(b)中描绘,去噪网络的结构在(c)中展示。

2025-12-12 15:52:20 806

原创 医用图像配准中从基于模型到学习正则化的综合综述|文献速递-文献分享

此外,本综述还探讨了正则化方法从传统配准到基于学习的配准的转移,识别了开放性挑战,并概述了未来的研究方向。1. 基于模型的正则化:这类方法通过预设假设来强制形变属性,如平滑性(通过扩散正则化或B样条隐式实现)、可逆性(通过惩罚负雅可比行列式来防止折叠)、逆一致性(确保正向和反向形变互为逆)、循环一致性(确保组合形变后图像与原始图像相似)、微分同胚(保证形变平滑、可逆且保持拓扑结构)、体积保持(通过惩罚雅可比行列式偏离1)和物理启发式方法(将图像建模为弹性或粘性流体)。粉色箭头表示折叠区域。

2025-12-11 15:51:56 767

原创 基于隐式神经表示的自由呼吸动态MRI重建及时间依赖线圈敏感度联合估计|文献速递-文献分享

本文提出IMJ-PLUS,一个基于INR的无监督重建框架,联合优化背景(低秩)、动态(稀疏)成分和时间变CSMs,并通过L+S分解框架进行正则化,旨在提高动态MRI重建质量,特别是在高加速因子和自由呼吸场景下。图6. 在心脏电影数据集上,GRASP、TDDIP、NF-cMRI、Feng et al.、FMLP、stDLNN、L+S net和IMJ-PLUS(从左到右)在每帧21根辐条和13根辐条(加速因子分别为11.7和18.9)下的重建结果。(c) L+S框架结果的多帧可视化,以及单独的L和S分量。

2025-12-10 16:33:06 885

原创 动态多阶响应和全局语义注入对抗学习:一种鲁棒的气道分割方法|文献速递-文献分享

2025.12.8这篇文章 2026 年发表于《Medical Image Analysis》期刊,由伦敦帝国理工学院、中山大学等多机构团队联合完成,核心是提出一种用于 CT 图像气道分割的创新模型 DMGSA,解决肺部疾病诊断中气道分割的关键难题。Title题目01Dynamical multi-order responses and global semantic-infused adversariallearning: A robust airway segmentation method动态多阶响应

2025-12-10 16:31:36 864

原创 基于深度学习的数字切片扫描仪无标记虚拟染色与人体组织分类|文献速递-文献分享

通过将UBF和VHE图像的特征进行融合,基于ResNet的深度学习模型在癌症检测方面取得了95.89%的准确率和94.84%的F1分数,优于仅使用单一模态(UBF或VHE)的性能,并接近真实H&E图像的分类性能(96.31%准确率)。在基于深度学习的工作流程(绿色路径)中,通过数字切片扫描仪获取未染色明场(UBF)图像,并使用NEGCUT模型(用于无配对图像到图像转换中对比学习的实例级硬负样本生成)进行虚拟染色,以生成虚拟H&E(VHE)图像。图4 VHE染色图像与H&E图像的定量分析和病理学家评估。

2025-12-08 16:58:56 909

原创 一种交互式可解释人工智能方法,用于改进数字细胞病理学癌症亚型分类中的人机协作|文献速递-文献分享

Title题目An interactive and explainable AI approach to improve human-machineteaming in cancer subtyping from digital cytopathology一种交互式可解释人工智能方法,用于改进数字细胞病理学癌症亚型分类中的人机协作01文献速递介绍癌症亚型分类正逐渐成为精准医疗的一种重要方法,可用于筛选最能从特定疗法中获益的患者,以及设计新型靶向药物。为实现亚型分类,首先通过细针穿刺活检提取癌细胞,随后进行进

2025-12-05 16:32:05 818

原创 半监督医学图像分割的自适应混合方法|文献速递-文献分享

Title题目Adaptive mix for semi-supervised medical image segmentation半监督医学图像分割的自适应混合方法01文献速递介绍医学图像分割旨在从不同成像模态中勾勒出组织、器官和病变区域,这对于预后评估、术前规划等计算机辅助临床应用至关重要。深度学习凭借其强大的表征能力和大量标记数据,极大地推动了医学图像分割的发展(Ronneberger 等人, 2015; Milletari 等人, 2016; Chen 等人, 2021a; Wang 等人, 202

2025-12-04 16:30:53 629

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除