大数据下的技术运营(三)——报警系统的设计与实现

文章目录

开发背景

报警服务架构

报警控制器 报警检验器

报警策略

报警流程

1事件判断 2条件判断 3报警处理

报警算法

最小值 最大值 环比 TopN BottomN

总结

开发背景

TalkingData拥有千台以上服务器的大数据业务集群,所以对于系统的监控能力、指标的实时分析和历史报警信息追查也就有一定的要求,而且由于机器数量较多,我们也需要一些灵活的报警策略应对不同的情况。

目前业界已经存在很多的报警系统,例如:Zabbix、Nagios、Promethus等等,但是以上系统分别有一些不足,Zabbix对于监控项目的批量修改会比较麻烦,Nagios 看不到历史数据,只能看到报警事件,很难追查故障原因,Promethus缺少Web操作界面,不太易于使用。

我们之前版本的监控系统有诸多弊病,主要是非常难于部署安装,而且对于更改某一台主机的监控项会非常苦难,所以最后选择了用Go语言开发下一个版本的监控系统,主要是因为可以满足用户的定制化的需求并且具备高易用性。此外,相比一些付费的报警系统,自研报警系统又可以节约成本,加上我们都是由Go语言开发的系统,开发好的项目直接编译成二进制文件后会非常容易部署。 

报警服务架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值