使用
very easy
- 在头部把包引用进来
from tensorflow.python import debug as tfdbg
- 在使用session前,包装一下
# 启动一个tensorflow会话
with tf.Session(config=tfconfig) as sess:
sess = tfdbg.LocalCLIDebugWrapperSession(sess) # 被调试器封装的会话
sw = SolverWrapper(sess, net, imdb, roidb, valroidb, output_dir, tb_dir,pretrained_model=args.weight)
print('Solving...')
sw.train_model(sess, args.max_iters)
print('done solving')
- 在对应目录下,在命令行中
# python tools/trainval_net.py
- 在console中执行run,直到跑到你想查看tensor的那里
- 可以愉快地查看tensor和node了
常用命令
查看tensor
# pt [tensor_name] # 查看指定名称的tensor
# lt -n [前缀]* # 查看指定前缀的tensors