小排_611
码龄8年
关注
提问 私信
  • 博客:10,571
    10,571
    总访问量
  • 8
    原创
  • 794,001
    排名
  • 2
    粉丝
  • 0
    铁粉

个人简介:生如夏花

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-01-17
博客简介:

weixin_37355348的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得13次收藏
创作历程
  • 9篇
    2017年
TA的专栏
  • 语音识别
    6篇
  • 机器学习
    1篇
  • 深度学习
    2篇
  • 小结
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CrossWord of AM training

General Framework for Acoustic ModelingBuilding ASR system incrementallyContext-independent ➔ Context-dependent modelingMono-phone ➔ Tri-phone HMMSingle Gaussian mixture per state ➔
原创
发布博客 2017.08.19 ·
321 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

声学模型训练----Acoustic Modeling

General Framework for AM:Building ASR system incrementallyContext-independent ➔ Context-dependent modelingMono-phone ➔ Tri-phone HMMSingle Gaussian mixture per state ➔ Multiple Gaussian mixtur
原创
发布博客 2017.08.19 ·
1130 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

ASR---自动语音识别 概述

语音识别基本原理:观察矢量X=X1X2…Xn词序列W=W1W2…Wm 最优词序列W^  P(X|W): 声学模型描述了词W产生的情况下信号X的概率。P(W): 语言模型描述了词W出现的频率概率分布P(X|W)和P(W)被假设成某种已知的概率分布函数Pa(X|W)和Pb(W):概率分布函数中的参数集a和b通过统计学的方法从实际训练数据中估计得到
原创
发布博客 2017.08.19 ·
2159 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

传统神经网络

线性回归:线性关系描述输入输出的关系。方程:y=ax1+bx2+cx3+d   参数:m=[a,b,c,d]    数据为矩阵:(x1,1; x2,1; x3,1) , (x1,2; x2,2; x3,2)......                      目标:使预测值尽可能的接近真实值。优化方法:梯度下降法求线性回归的最优解  当前初始状态:m0 = [a0,
原创
发布博客 2017.07.16 ·
565 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

深度学习基础介绍

深度学习基础框架图:深度学习的发展历程:深度学习的优点:学习能力强;适应性好;可移植性好。缺点:计算量大,便携性能差;硬件要求高;模型设计复杂;善于计算,但是不会算计。深度学习各框架的比较:基本概念:神经元边界算子卷积核--CNN
原创
发布博客 2017.07.16 ·
497 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

交叉熵基本概念

语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney
转载
发布博客 2017.07.16 ·
2897 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

自然语言处理(二)

神经序列模型:机器学习:优化目标函数:初始化参数计算偏导数更新参数更新learning rate,直至收敛Batch Gradient Descent 梯度下降法:稳定可靠,更新速度慢。必须遍历所有的训练数据求偏导数,才能更新一次参数。Stochastic Gra
原创
发布博客 2017.07.14 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自然语言处理(一)

概论自然语言处理----利用计算机处理文本及声音。应用领域:输入—输出;输入法; 拼写更正;机器翻译;evernote推荐系统; 英文写作助手;twitter重大事件分析;医疗诊断;体育赛事报道生成;应用技术:语言模型,自动机,中文分词,文本对齐,模板匹配,分类器,相似度计算,local sensitive hashing,文本分类,关键词匹配,
原创
发布博客 2017.07.14 ·
1887 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

语音基础知识

语音识别原理:语音识别的最终目的是让机器听懂人的语言。语音信号通过麦克风采集,经过采样和 A/D 转换后由模拟信号转变为数字信号。然后对语音的数字信号进行预加重,分帧,加窗,端点检测和滤波等处理。预处理过后的语音信号将按照特定的特征提取方法 取出最能够表现这段语 音信号特征的参数,这些特征参数按时间序列构成了这段语音信号的特征
原创
发布博客 2017.07.14 ·
644 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏