数据修改主要以增删改差为主,这里比较几种写法在数据处理时间上的巨大差别。
数据量大概是500万行级别的数据,文件大小为100M。
1.iloc
iloc是一种速度极其慢的写法。这里我们对每个csv文件中的每一行循环再用iloc处理,示例代码如下:
for index in range(len(df)):
df.iloc['attr'][index] = xxx
使用这种方法对五百万行的数据进行处理大概需要5个小时,实在是很慢。
2.at
at相比于iloc有了很大的性能提升,也是for循环处理,示例代码如下:
for i in range(len(df)):
if df.at[i,'attr'] > 0:
sum_positive += df.at[i,'attr']
else:
sum_negetive += df.at[i,'sttr']
在我的程序里at和iloc是可以通用的,用at,程序的速度会有大幅提高,大概10分钟,但是还不够。
3.apply(lambda x:...)
想说apply是因为我觉得for循环速度太慢,想在循环上对程序进行优化。然后网上有人说apply可以大幅度提升速度,然而经过测试发现在我的程序里,使用apply和for差不多吧,性能也一般。
4.直接用series处理
这才是真正优化for循环的方法,以上面at的程序为例,可以改写为: