Sherwood算法求解离散对数问题

一、离散对数问题
1.定义
a = g x    m o d    p a = g ^ x\;mod\;p a=gxmodp,记 l o g g ,    p a = x log_{g,\;p} a = x logg,pa=x,称x为a的对数(以g为底,模p)。
给定p, g, a计算x称为离散对数问题
2.应用之一:加密
若g,p已知,x为私钥,求a公钥很容易,即解密;
若g,p已知,a为公钥,求x公钥很困难(p是很大的质数更难),即破解困难(下文将描述);

二、简单算法
根据费马小定理( a p − 1    m o d    p = 1 a^{p - 1}\;mod\;p = 1 ap1modp=1,p是质数,整数a不是p的倍数), x = 0 x = 0 x=0 x = p − 1 x = p - 1 x=p1计算 g x    m o d    p g ^ x\;mod\;p gxmodp重复,最坏的情况下,x从0~p-2都不重复;所以,简单算法的思想就是遍历x,找到满足 a = g x    m o d    p a = g ^ x\;mod\;p a=gxmodp的x(一般a不取0,所以遍历x从1~p-1)。

代码如下:

#include <cstdio>

int dlog(int g, int a, int p) {
    int x = 0, y = 1;
    do{
        x++;
        y *= g;
    }while((a != y % p) && (x != p));
    return x;
}

int main() {
    //测试
    int g = 2, a = 6, p = 19;
    int ans = dlog(g, a, p);
    if(ans == p) printf("无解");
    else printf("x = %d", ans);
    return 0;
}

分析:
当a = 14时, x = 7;意味着尝试了7次;
当a = 7时,x = 14;意味着尝试了14次;
也就是说,执行时间与a的取值相关。

动机:用sherwood算法使得执行时间与a无关。

三、sherwood算法
1.一般算法f(x)改造成Sherwood算法:

RH(x) {
     // 用Sherwood算法计算f(x)
     n ← length[x];             // x的size为n
     r ← uniform(An);           // 随机取一元素
     y ← u(x, r);                 //将原实例x转化为随机实例y
     s ← f(y);                  // 用确定算法求y的解s
     return v(r, s);                 // 将s的解变换为x的解
}

Sherwood算法的核是找到u,v方法
这个伪码看不明白,看下面实例

2.计算离散对数的改造思路
(1)构造 : y = l o g g ,    p c y=log_{g,\;p}c y=logg,pc
其中,
c = b ⋅ a    m o d    p c = b·a \;mod\; p c=bamodp ( b = g r    m o d    p b = g^r\;mod\;p b=grmodp)
r对应于uniform(An),实际是从0~p-2中随机选一个数。

l o g g ,    p b = r log_{g,\;p} b = r logg,pb=r
l o g g ,    p a = x log_{g,\;p} a = x logg,pa=x

(2)推导过程
y = l o g g ,    p c = l o g g ,    p ( b ⋅ a    m o d    p ) = ( l o g g ,    p b + l o g g ,    p a )    m o d   ( p − 1 ) = ( r + x )    m o d    ( p − 1 ) y =log_{g,\;p} c=log_{g,\;p}(b·a\;mod\;p)=(log_{g,\;p} b + log_{g,\;p} a)\;mod\:(p - 1)=(r+x)\;mod\;(p-1) y=logg,pc=logg,p(bamodp)=(logg,pb+logg,pa)mod(p1)=(r+x)mod(p1)

推导依据的定理
l o g g ,    p ( s ⋅ t    m o d    p ) = ( l o g g ,    p s + l o g g ,    p t )    m o d   ( p − 1 ) log_{g,\;p}(s·t\;mod\;p)=(log_{g,\;p} s + log_{g,\;p} t)\;mod\:(p - 1) logg,p(stmodp)=(logg,ps+logg,pt)mod(p1)

总结:
y = ( r + x )    m o d    ( p − 1 ) y=(r+x)\;mod\;(p-1) y=(r+x)mod(p1),得 x = ( y − r )    m o d    ( p − 1 ) x = (y - r) \;mod \;(p - 1) x=(yr)mod(p1)

推导过程:
r + x = k ⋅ ( p − 1 ) + y ( k 为 一 常 系 数 ) r + x = k·(p-1) + y (k为一常系数) r+x=k(p1)+y(k) x = k ⋅ ( p − 1 ) + y − r x = k·(p-1) + y - r x=k(p1)+yr, 故 x = ( y − r )    m o d    p x = (y-r)\;mod\;p x=(yr)modp

上述提到的:
u指的便是,把求x转化为求y,即 y = g c    m o d    p y=g^c\;mod\;p y=gcmodp c = u ( x , r ) = b ⋅ a    m o d    p c = u(x, r)=b·a \;mod\; p c=u(x,r)=bamodp
v指的便是,已知y后求x,即 x = ( y − r )    m o d    ( p − 1 ) x = (y - r) \;mod \;(p - 1) x=(yr)mod(p1)

3.代码

#include <cstdio>
#include <random>
#include <ctime>

int dlog(int g, int a, int p) {
    int x = 0, y = 1;
    do{
        x++;
        y *= g;
    }while((a != y % p) && (x != p));
    return x;
}

int uniform(int maxN) {
    return rand() % maxN;
}

int ModularExponent(int g, int r, int p) {
    long long sum = 1;
    for(int i = 1; i<= r; i++) sum *= g;
    return sum % p;
}


int dlogRH(int g, int a, int p) {
    int r = uniform(p - 1);
    int b = ModularExponent(g, r, p);
    int c = (b * a) % p;
    int y = dlog(g, c, p);  //这里y可能已经无解了;
    if(y == p) return -1;
    else return (y - r + p -1) % (p - 1);   //C++,y-r可能是负数,所以要加p - 1;
}


int main() {
    //测试
    srand((unsigned)time(NULL));
    int g = 2, a = 6, p = 19;
    printf("确定算法的结果:\n");
    int ans1 = dlog(g, a, p);
    if(ans1 == p) printf("无解\n");
    else printf("x = %d\n", ans1);
     printf("Sherwood算法的结果:\n");
    int ans2 = dlogRH(g, a, p);
    if(ans2 == -1) printf("无解\n");
    else printf("x = %d\n", ans2);
    return 0;
}

4.结果
①g = 2, a = 6, p = 19在这里插入图片描述
②g = 2, a = 3, p = 7在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值