数论之指标(离散对数) 若干练习

本文提供了一系列关于离散对数的练习题,包括制作模数的指标表和求解模指数方程。通过举例说明如何利用原根和指标来解决此类问题,如求解6x12 ≡ 11 mod 17, 7x ≡ 6 mod 17, 3x5 ≡ 1 mod 23等。每个例题都详细展示了计算过程和解题思路,适用于初等数论的学习者。" 115853432,10544351,MATLAB实现Wiener滤波器:跟踪决策导向SNR,"['MATLAB编程', '信号处理', '语音增强']
摘要由CSDN通过智能技术生成

传送门

本文涉及的理论可参见博文《数论之指标(离散对数) 理论基础》.

例题1 制作模 2 2 2到模 10 10 10的指标表.

 设模数为 m m m.

  1. 显然 m = 2 m=2 m=2仅有原根 r = 1 r=1 r=1. φ ( 2 ) = 1 \varphi \left( 2 \right)=1 φ(2)=1, 由于
    1 1 − 1 = 1 0 = 1     m o d   2 , { {1}^{1-1}}={ {1}^{0}}=1\text{ }\bmod 2, 111=10=1 mod2,
    故有
    i n d 1 1 = 0     m o d   φ ( 2 ) = 1. in{ {d}_{1}}1=0\text{ }\bmod \varphi \left( 2 \right)=1. ind11=0 modφ(2)=1.

  2. 博文《原根求解方法》中的例子8, m = 3 m=3 m=3仅有原根 r = 2 r=2 r=2. φ ( 3 ) = 2 \varphi \left( 3 \right)=2 φ(3)=2, 由于
    2 2 − 1 = 2 1 = 2     m o d   3 ,   2 0 = 1     m o d   3 , { {2}^{2-1}}={ {2}^{1}}=2\text{ }\bmod 3,\text{ }{ {2}^{0}}=1\text{ }\bmod 3, 221=21=2 mod3, 20=1 mod3,
    故有
    i n d 2 2 = 1     m o d   φ ( 3 ) = 2 ,   i n d 2 1 = 0     m o d   2. in{ {d}_{2}}2=1\text{ }\bmod \varphi \left( 3 \right)=2,\text{ }in{ {d}_{2}}1=0\text{ }\bmod 2. ind22=1 modφ(3)=2, ind21=0 mod2.

  3. 博文《原根求解方法》中的例子11, m = 4 m=4 m=4仅有原根 r = 3 r=3 r=3. φ ( 4 ) = φ ( 2 2 ) = 2 1 × ( 2 − 1 ) = 2 \varphi \left( 4 \right)=\varphi \left( { {2}^{2}} \right)={ {2}^{1}}\times \left( 2-1 \right)=2 φ(4)=φ(22)=21×(21)=2, 由于
    3 2 − 1 = 3 1 = 3     m o d   4 ,   3 0 = 1     m o d   4 , { {3}^{2-1}}={ {3}^{1}}=3\text{ }\bmod 4,\text{ }{ {3}^{0}}=1\text{ }\bmod 4, 321=31=3 mod4, 30=1 mod4,
    故有
    i n d 3 3 = 1     m o d   φ ( 4 ) = 2 ,   i n d 3 1 = 0     m o d   2. in{ {d}_{3}}3=1\text{ }\bmod \varphi \left( 4 \right)=2,\text{ }in{ {d}_{3}}1=0\text{ }\bmod 2. ind33=1 modφ(4)=2, ind31=0 mod2.

  4. 博文《原根求解方法》中的例子8, m = 5 m=5 m=5仅有原根 r = 2 , 3 r=2,3 r=2,3. φ ( 5 ) = 4 \varphi \left( 5 \right)=4 φ(5)=4, 由于
    2 4 − 1 = 2 3 = 8 ≡ 3     m o d   5 ,   2 2 = 4     m o d   5 ,   2 1 = 2     m o d   5 ,   2 0 = 1     m o d   5 , 3 4 − 1 = 3 3 = 27 ≡ 2     m o d   5 ,   3 2 = 9 ≡ 4     m o d   5 ,   3 1 = 3     m o d   5 ,   3 0 = 1     m o d   5 , \begin{aligned} & { {2}^{4-1}}={ {2}^{3}}=8\equiv 3\text{ }\bmod 5,\text{ }{ {2}^{2}}=4\text{ }\bmod 5,\text{ }{ {2}^{1}}=2\text{ }\bmod 5,\text{ }{ {2}^{0}}=1\text{ }\bmod 5, \\ & { {3}^{4-1}}={ {3}^{3}}=27\equiv 2\text{ }\bmod 5,\text{ }{ {3}^{2}}=9\equiv 4\text{ }\bmod 5,\text{ }{ {3}^{1}}=3\text{ }\bmod 5,\text{ }{ {3}^{0}}=1\text{ }\bmod 5, \\ \end{aligned} 241=23=83 mod5, 22=4 mod5, 21=2 mod5, 20=1 mod5,341=33=272 mod5, 32=94 mod5, 31=3 mod5, 30=1 mod5,
    故有
    i n d 2 3 = 3   m o d   4 ,   i n d 2 4 = 2   m o d   4 ,   i n d 2 2 = 1   m o d   4 ,   i n d 2 1 = 0   m o d   4 , i n d 3 2 = 3   m o d   4 ,   i n d 3 4 = 2   m o d   4 ,   i n d 3 3 = 1   m o d   4 ,   i n d 3 1 = 0   m o d   4. \begin{aligned} & in{ {d}_{2}}3=3 \bmod4,\text{ }in{ {d}_{2}}4=2 \bmod4,\text{ }in{ {d}_{2}}2=1 \bmod4,\text{ }in{ {d}_{2}}1=0 \bmod4, \\ & in{ {d}_{3}}2=3 \bmod4,\text{ }in{ {d}_{3}}4=2 \bmod4,\text{ }in{ {d}_{3}}3=1 \bmod4,\text{ }in{ {d}_{3}}1=0 \bmod4. \\ \end{aligned} ind23=3mod4, ind24=2mod4, ind22=1mod4, ind21=0mod4,ind32=3mod4, ind34=2mod4, ind33=1mod4, ind31=0mod4.

  5. 由于模 3 3 3的大于0且小于 6 6 6的原根仅有 2 ,   5 2,\text{ }5 2, 5, 而 2 ≡ 0     m o d   2 ,   5 ≡ 1     m o d   2 2\equiv 0\text{ }\bmod 2,\text{ }5\equiv 1\text{ }\bmod 2 20 mod2, 51 mod2, , 因此由博文《原根的存在性 相关定理(二)》中的定理11和定理12, m = 6 = 2 × 3 m=6=2\times 3 m=6=2×3仅有原根 r = 5 r=5 r=5. φ ( 6 ) = φ ( 2 ) φ ( 3 ) = 2 \varphi \left( 6 \right)=\varphi \left( 2 \right)\varphi \left( 3 \right)=2 φ(6)=φ(2)φ(3)=2. 由于
    5 2 − 1 = 5 1 = 5     m o d   6 ,   5 0 = 1     m o d   6 , { {5}^{2-1}}={ {5}^{1}}=5\text{ }\bmod 6,\text{ }{ {5}^{0}}=1\text{ }\bmod 6, 521=51=5 mod6, 50=1 mod6,
    故有
    i n d 5 5 = 1   m o d   2 ,   i n d 5 1 = 0   m o d   2. in{ {d}_{5}}5=1 \bmod2,\text{ }in{ {d}_{5}}1=0 \bmod2. ind55=1mod2, ind51=0mod2.

  6. 博文《原根求解方法》中的例子8, m = 7 m=7 m=7仅由原根 r = 3 , 5 r=3,5 r=3,5. φ ( 7 ) = 6 \varphi \left( 7 \right)=6 φ(7)=6. 计算得指标表
    n     m o d   6 0 1 2 3 4 5 i n d 3 / 5 ( a )     m o d   6 3 n     m o d   7 1 3 2 6 4 5 a     m o d   7 5 n     m o d   7 1 5 4 6 2 3 a     m o d   7 \begin{matrix} n\text{ }\bmod 6 & 0 & 1 & 2 & 3 & 4 & 5 & in{ {d}_{3/5}}\left( a \right)\text{ }\bmod 6 \\ { {3}^{n}}\text{ }\bmod 7 & 1 & 3 & 2 & 6 & 4 & 5 & a\text{ }\bmod 7 \\ { {5}^{n}}\text{ }\bmod 7 & 1 & 5 & 4 & 6 & 2 & 3 & a\text{ }\bmod 7 \\ \end{matrix} n mod63n mod75n mod7011135224366442553ind3/5(a) mod6a mod7a mod7

  7. 博文《原根的存在性 相关定理(二)》中的定理13, m = 8 m=8 m=8没有原根, 也就没有指标.

  8. 3 3 3的大于0且小于9的原根仅有 2 ,   5 ,   8 2,\text{ }5,\text{ }8 2, 5, 8, 且 2 3 − 1 = 4 ≡ 1     m o d   9 ,   5 3 − 1 = 25 ≡ 1     m o d   9 ,   8 3 − 1 = 64 ≡ 1     m o d   9 { {2}^{3-1}}=4\cancel{\equiv }1\text{ }\bmod 9,\text{ }{ {5}^{3-1}}=25\cancel{\equiv }1\text{ }\bmod 9,\text{ }{ {8}^{3-1}}=64\equiv 1\text{ }\bmod 9 231=4 1 mod9, 531=25 1 mod9, 831=641 mod9, 因此由博文《原根的存在性 相关定理 (一)》中的定理5, m = 9 m=9 m=9仅有原根 r = 2 , 5 r=2,5 r=2,5. φ ( 9 ) = φ ( 3 2 ) = 3 1 × ( 3 − 1 ) = 6 \varphi \left( 9 \right)=\varphi \left( { {3}^{2}} \right)={ {3}^{1}}\times \left( 3-1 \right)=6 φ(9)=φ(32)=31×(31)=6. 计算得指标表
    n     m o d   6 0 1 2 3 4 5 i n d 2 / 5 ( a )   m o d   6 2 n     m o d   9 1 2 4 8 7 5 a     m o d   9 5 n     m o d   9 1 5 7 8 4 2 a     m o d   9 \begin{matrix} n\text{ }\bmod 6 & 0 & 1 & 2 & 3 & 4 & 5 & in{ {d}_{2/5}}\left( a \right) \bmod6 \\ { {2}^{n}}\text{ }\bmod 9 & 1 & 2 & 4 & 8 & 7 & 5 & a\text{ }\bmod 9 \\ { {5}^{n}}\text{ }\bmod 9 & 1 & 5 & 7 & 8 & 4 & 2 & a\text{ }\bmod 9 \\ \end{matrix} n mod62n mod95n mod9011125247

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值