浅析RAG技术:大语言模型的知识增强之道
🏠 引言:当生成遇到检索
在人工智能领域,大型语言模型(LLMs)如GPT-4、Llama3等展现出了惊人的文本生成能力,但它们也面临着知识滞后、事实性错误等挑战。Retrieval-Augmented Generation(RAG)技术应运而生,通过将信息检索与文本生成相结合,显著提升了AI系统的准确性和可靠性。本文将全面剖析RAG技术的原理、实现和最佳实践。
🏠 RAG技术核心架构
RAG系统由三个关键组件构成:
-
检索模块:
- 将用户查询向量化
- 从知识库中检索相关文档
- 支持混合检索策略(向量+关键词)
-
知识库:
- 文档分块处理(通常500-1000字符)
- 使用嵌入模型生成向量表示
- 存储在FAISS/Chroma等向量数据库中
-
生成模块:
- 将检索结果作为上下文
- 通过提示工程优化输入
- 生成最终回答