浅析RAG技术:大语言模型的知识增强之道

浅析RAG技术:大语言模型的知识增强之道

🏠 引言:当生成遇到检索

在人工智能领域,大型语言模型(LLMs)如GPT-4、Llama3等展现出了惊人的文本生成能力,但它们也面临着知识滞后、事实性错误等挑战。Retrieval-Augmented Generation(RAG)技术应运而生,通过将信息检索与文本生成相结合,显著提升了AI系统的准确性和可靠性。本文将全面剖析RAG技术的原理、实现和最佳实践。

在这里插入图片描述

🏠 RAG技术核心架构

RAG系统由三个关键组件构成:

  1. 检索模块

    • 将用户查询向量化
    • 从知识库中检索相关文档
    • 支持混合检索策略(向量+关键词)
  2. 知识库

    • 文档分块处理(通常500-1000字符)
    • 使用嵌入模型生成向量表示
    • 存储在FAISS/Chroma等向量数据库中
  3. 生成模块

    • 将检索结果作为上下文
    • 通过提示工程优化输入
    • 生成最终回答
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥猪猪爸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值