Paper笔记: 《Towards Evaluating the Robustness of Neural Networks》(CW攻击)

本文介绍了《Towards Evaluating the Robustness of Neural Networks》论文中提出的CW攻击方法,该方法成功突破了当时被认为坚不可摧的防御性蒸馏,攻击成功率接近100%。文章详细探讨了CW攻击的动机、贡献、攻击策略,包括基于L0、L2和L∞距离的优化目标,并分析了如何有效地处理像素值约束。实验表明,CW攻击在多个数据集上表现出高成功率和低扰动,对防御性蒸馏构成严重威胁,同时提出迁移性攻击的概念,进一步验证了其鲁棒性。
摘要由CSDN通过智能技术生成

论文: https://arxiv.org/pdf/1608.04644.pdf?source=post_page
代码:https://github.com/Harry24k/CW-pytorch

Motivation

  又是一篇对抗攻击领域的基石之作,论文的思路主要针对当时最强的防御方法——防御性蒸馏。在当时,几乎所有的攻击方法都无法攻破防御性蒸馏,而本文的方法在面对防御性蒸馏时,取得了几乎100%的攻击成功率,这也再一次推动了对抗攻防算法的演进。

Contribution

  作者提出了一种新的攻击方法(业界常称之为CW),可以以几乎100%的成功率攻破适应性防御,并成为检验防御模型效果的一个新的baseline。作者将本文的贡献总结为以下四点:
(1) 基于 L 0 L_0 L0 L 2 L_2 L2 L ∞ L_\infty L距离设计了三种攻击方法。
(2) 利用这三种攻击方法攻破防御性蒸馏。
(3) 提出利用高置信度的攻击样本来进行迁移攻击,作为测试模型鲁棒性的手段,同时这种方法也成功攻破了防御性蒸馏。
(4) 系统性地评估了不同损失函数对攻击效果的影响,发现损失函数的选择影响巨大。

Method

目标函数

  首先来看对抗攻击优化函数的最基本形式:
m i n i m i z e    D ( x , x + δ ) s u c h    t h a t    C ( x + δ ) = t      x + δ ∈ [ 0 , 1 ] n minimize\,\,D(x,x+\delta) \\ such\,\,that\,\,C(x+\delta)=t \,\,\,\, x+\delta\in[0,1]^n minimizeD(x,x+δ)suchthatC(x+δ)=tx+δ[0,1]n
  上述的优化问题是无法直接求解的,因此需要定义关于分类的损失函数 f f f,使得当且仅当 f ( x + δ ) ≤ 0 f(x+\delta)\leq0 f(x+δ)0时, C ( x + δ ) = t C(x+\delta)=t C(x+δ)=t成立,从而联立 D D D f f f,形成可解的优化函数形式。这里作者讨论了以下7种损失函数,其中, s o f t p l u s ( x ) = l o g ( 1 + e x p ( x ) ) softplus(x) = log(1+exp(x)) softplus(x)=log(1+exp(x)),而 l o s s loss loss代表交叉熵损失函数。
f 1 ( x ′ ) = − l o s s F , t ( x ′ ) + 1 f 2 ( x ′ ) = ( m a x i ≠ t F ( x ′ ) i − F ( x ′ ) t ) + f 3 ( x ′ ) = s o f t p l u s ( m a x i ≠ t F ( x ′ ) i − F ( x ′ ) t ) − l o g ( 2 ) f 4 ( x ′ ) = ( 0.5 − F ( x ′ ) t ) + f 5 ( x ′ ) = − l o g ( 2 F ( x ′ ) t − 2 ) f 6 ( x ′ ) = ( m a x i ≠ t Z ( x ′ ) i − Z ( x ′ ) t ) + f 7 ( x ′ ) = s o f t p l u s ( m a x i ≠ t Z ( x ′ ) i − Z ( x ′ ) t ) − l o g ( 2 ) f_1(x') = -loss_{F,t}(x') + 1 \\ f_2(x') = (\underset{i\neq t}{max} F(x')_i - F(x')_t)^+ \\ f_3(x') = softplus(\underset{i\neq t}{max} F(x')_i - F(x')_t) - log(2) \\ f_4(x') = (0.5 - F(x')_t)^+ \\ f_5(x') = -log(2F(x')_t - 2) \\ f_6(x') = (\underset{i\neq t}{max} Z(x')_i - Z(x')_t)^+ \\ f_7(x') = softplus(\underset{i\neq t}{max} Z(x')_i - Z(x')_t) - log(2) f1(x)=lossF,t(x)+1f2(x)=(i=tmaxF(x)i

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
最近,对于图神经网络的研究日益深入,引起了广泛关注。图神经网络是一种能够对图数据进行建模和分析的神经网络模型。它可以处理任意结构的图形数据,如社交网络、蛋白质互作网络等。 在过去的几年中,研究者们提出了许多图神经网络的模型和方法。然而,这些方法仍然面临一些挑战,例如有效地处理大型图形数据、学习高质量的图嵌入表示以及推理和预测复杂的图结构属性等。 为了克服这些挑战,研究人员开始通过增加神经网络的深度来探索更深的图神经网络模型。深度模型具有更强大的表达能力和学习能力,可以更好地捕捉图数据中的关系和模式。这些深层图神经网络可以通过堆叠多个图神经网络层来实现。每个图神经网络层都会增加一定的复杂性和抽象级别,从而逐渐提高图数据的表达能力。 除了增加深度外,研究人员还提出了一些其他的改进来进一步提高图神经网络的性能。例如,引入注意力机制可以使模型能够自动地选择重要的节点和边来进行信息传播。此外,研究人员还研究了如何通过引入图卷积操作来增强图数据的局部性,从而提高图神经网络模型的效果。 综上所述,对于更深层的图神经网络的研究将在处理大规模图形数据、学习高质量的图表示以及进行复杂图结构属性的推理方面取得更好的性能。随着深度图神经网络的推广和应用,我们可以预见它将在许多领域,如社交网络分析、推荐系统和生物信息学中发挥重要作用,为我们带来更多的机遇和挑战。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值