ML——决策树

Table of Contents

1 简介

2 决策树模型

决策树学习

3 特征选择

4 决策树的生成

4.1 ID3算法

​ 4.2 C4.5算法

5 决策树的剪枝 

6 CART算法 

6.1 CART生成

6.2 CART剪枝 

7 代码实现 


本博客只用于自身学习,如有错误,虚心求教!!!

1 简介

决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。决策树分类器就像判断模块和终止块组成的流程图,终止块表示分类结果(也就是树的叶子)。判断模块表示对一个特征取值的判断(该特征有几个值,判断模块就有几个分支)。

一棵决策树的生成过程主要分为以下3个部分:

  1. 特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。

  2. 决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。

  3. 剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。  

2 决策树模型

决策树可以看成一个if-then规则。有决策树的根结点到叶节点的每一条路径构建一条规则,路径上内部节点的特征对应着规则的条件,而叶节点的类对应着规则的结论。决策树的路径有一个重要的性质:互斥且完备 (也就是说每一个实例都被一条路径或一条规则所覆盖,而且只被一条路径或一条规则所覆盖)

决策树学习

 

3 特征选择

特征选择在于选取对训练数据具有分类能力的特征,特征选择是决定用哪个特征来划分特征空间,通常特征选择的准则是信息增益或信息增益比。

熵:表示随机变量不确定性的度量

设X是一个取有限个值得离散随机变量,其概率分布为:

                                                \large P(X=x_{i})={p_{i}}, i=1,2,...,n

则,随机变量X的熵定义为:

                                               \large H(X) = -\sum _{i=1}^{n} p_{i}logp_{i}

熵越大,随机变量的不确定性就越大

条件熵H(Y|X) 表示在已知随机变量X的条件下随机变量Y的不确定性。

                                            \large H(Y|X) = \sum _{i=1}^{n} p_{i}H(Y|X=x_{i})

当熵和条件熵中的概率由数据统计(极大似然估计)得到时,所对应的熵和条件熵分别称为经验熵和经验条件熵

信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。

特征A对训练数据集D的信息增益g(D, A) ,定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即:

                                            g(D, A) = H(D)-H(D|A)

信息增益比:特征A对训练数据集D的信息增益比g_{R}(D, A)定义为其信息增益 g(D,A)与训练数据集D的经验熵H(D)之比:

                                                                      \large g_{R}(D, A) = \tfrac{g(D, A)}{H(D)}

4 决策树的生成

4.1 ID3算法

 4.2 C4.5算法

5 决策树的剪枝 

决策树生成算法递归地产生决策树,直到不能继续为止,这样产生的树往往对训练数据很准确,但对测试数据的分类就没那么准确了,也就是容易过拟合。过拟合的原因是训练时过多的考虑训练数据的正确分类,从而产生了很复杂的决策树,解决这个问题的办法就是减少决策树的复杂度,给决策树剪枝。

剪枝从已生成的树上裁剪掉一些子树或叶节点,并将其根结点或父节点作为新的叶节点,从而简化模型。

剪枝的实现往往通过极小化决策树整体的损失函数或代价函数来实现

设树T的叶节点个数为|T|,t是树T的叶节点

6 CART算法 

CART算法即可用于分类也可用于回归,CART算法是在给定输入随机变量X条件下输出随机变量Y的条件概率分布的学习方法。CART算法假设决策树是二叉树,内部节点特征的取值为“是” 和 “否”

CART算法由以下两部分组成:

  1. 决策树生成,基于训练数据集生成决策树,生成的决策树要尽量大
  2. 决策树的剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时用损失函数最小作为剪枝的标准。

6.1 CART生成

决策树的生成是递归地构建二叉决策树的过程,对回归树用平方误差最小化准则,对分类树用基尼指数最小化准则

6.2 CART剪枝 

7 代码实现 

项目案例1: 判定鱼类和非鱼类

项目案例2: 使用决策树预测隐形眼镜类型

import operator
from math import log
import decisionTreePlot as dtPlot
from collections import Counter


def createDataSet():
    """DateSet 基础数据集
    Args:
        无需传入参数
    Returns:
        返回数据集和对应的label标签
    """
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    # dataSet = [['yes'],
    #         ['yes'],
    #         ['no'],
    #         ['no'],
    #         ['no']]
    # labels  露出水面   脚蹼
    labels = ['no surfacing', 'flippers']
    # change to discrete values
    return dataSet, labels


def calcShannonEnt(dataSet):
    """calcShannonEnt(calculate Shannon entropy 计算给定数据集的香农熵)
    Args:
        dataSet 数据集
    Returns:
        返回 每一组feature下的某个分类下,香农熵的信息期望
    """
    # -----------计算香农熵的第一种实现方式start--------------------------------------------------------------------------------
    # 求list的长度,表示计算参与训练的数据量
    numEntries = len(dataSet)
    # 下面输出我们测试的数据集的一些信息
    # 例如:<type 'list'> numEntries:  5 是下面的代码的输出
    # print type(dataSet), 'numEntries: ', numEntries

    # 计算分类标签label出现的次数
    labelCounts = {}
    # the the number of unique elements and their occurance
    for featVec in dataSet:
        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
        currentLabel = featVec[-1]
        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
        # print '-----', featVec, labelCounts

    # 对于label标签的占比,求出label标签的香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        # 使用所有类标签的发生频率计算类别出现的概率。
        prob = float(labelCounts[key])/numEntries
        # log base 2 
        # 计算香农熵,以 2 为底求对数
        shannonEnt -= prob * log(prob, 2)
        # print '---', prob, prob * log(prob, 2), shannonEnt
    # -----------计算香农熵的第一种实现方式end--------------------------------------------------------------------------------

    # # -----------计算香农熵的第二种实现方式start--------------------------------------------------------------------------------
    # # 统计标签出现的次数
    # label_count = Counter(data[-1] for data in dataSet)
    # # 计算概率
    # probs = [p[1] / len(dataSet) for p in label_count.items()]
    # # 计算香农熵
    # shannonEnt = sum([-p * log(p, 2) for p in probs])
    # # -----------计算香农熵的第二种实现方式end--------------------------------------------------------------------------------
    return shannonEnt


def splitDataSet(dataSet, index, value):
    """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)
        就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中
    Args:
        dataSet 数据集                 待划分的数据集
        index 表示每一行的index列        划分数据集的特征
        value 表示index列对应的value值   需要返回的特征的值。
    Returns:
        index列为value的数据集【该数据集需要排除index列】
    """
    # -----------切分数据集的第一种方式 start------------------------------------
    retDataSet = []
    for featVec in dataSet: 
        # index列为value的数据集【该数据集需要排除index列】
        # 判断index列的值是否为value
        if featVec[index] == value:
            # chop out index used for splitting
            # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行
            reducedFeatVec = featVec[:index]
            '''
            请百度查询一下: extend和append的区别
            list.append(object) 向列表中添加一个对象object
            list.extend(sequence) 把一个序列seq的内容添加到列表中
            1、使用append的时候,是将new_media看作一个对象,整体打包添加到music_media对象中。
            2、使用extend的时候,是将new_media看作一个序列,将这个序列和music_media序列合并,并放在其后面。
            result = []
            result.extend([1,2,3])
            print result
            result.append([4,5,6])
            print result
            result.extend([7,8,9])
            print result
            结果:
            [1, 2, 3]
            [1, 2, 3, [4, 5, 6]]
            [1, 2, 3, [4, 5, 6], 7, 8, 9]
            '''
            reducedFeatVec.extend(featVec[index+1:])
            # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据
            # 收集结果值 index列为value的行【该行需要排除index列】
            retDataSet.append(reducedFeatVec)
    # -----------切分数据集的第一种方式 end------------------------------------

    # # -----------切分数据集的第二种方式 start------------------------------------
    # retDataSet = [data for data in dataSet for i, v in enumerate(data) if i == axis and v == value]
    # # -----------切分数据集的第二种方式 end------------------------------------
    return retDataSet


def chooseBestFeatureToSplit(dataSet):
    """chooseBestFeatureToSplit(选择最好的特征)
    Args:
        dataSet 数据集
    Returns:
        bestFeature 最优的特征列
    """

    # -----------选择最优特征的第一种方式 start------------------------------------
    # 求第一行有多少列的 Feature, 最后一列是label列嘛
    numFeatures = len(dataSet[0]) - 1
    # label的信息熵
    baseEntropy = calcShannonEnt(dataSet)
    # 最优的信息增益值, 和最优的Featurn编号
    bestInfoGain, bestFeature = 0.0, -1
    # iterate over all the features
    for i in range(numFeatures):
        # create a list of all the examples of this feature
        # 获取每一个实例的第i+1个feature,组成list集合
        featList = [example[i] for example in dataSet]
        # get a set of unique values
        # 获取剔重后的集合,使用set对list数据进行去重
        uniqueVals = set(featList)
        # 创建一个临时的信息熵
        newEntropy = 0.0
        # 遍历某一列的value集合,计算该列的信息熵 
        # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
        infoGain = baseEntropy - newEntropy
        print('infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy)
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
    # -----------选择最优特征的第一种方式 end------------------------------------

    # # -----------选择最优特征的第二种方式 start------------------------------------
    # # 计算初始香农熵
    # base_entropy = calcShannonEnt(dataSet)
    # best_info_gain = 0
    # best_feature = -1
    # # 遍历每一个特征
    # for i in range(len(dataSet[0]) - 1):
    #     # 对当前特征进行统计
    #     feature_count = Counter([data[i] for data in dataSet])
    #     # 计算分割后的香农熵
    #     new_entropy = sum(feature[1] / float(len(dataSet)) * calcShannonEnt(splitDataSet(dataSet, i, feature[0])) \
    #                    for feature in feature_count.items())
    #     # 更新值
    #     info_gain = base_entropy - new_entropy
    #     print('No. {0} feature info gain is {1:.3f}'.format(i, info_gain))
    #     if info_gain > best_info_gain:
    #         best_info_gain = info_gain
    #         best_feature = i
    # return best_feature
    # # -----------选择最优特征的第二种方式 end------------------------------------


def majorityCnt(classList):
    """majorityCnt(选择出现次数最多的一个结果)
    Args:
        classList label列的集合
    Returns:
        bestFeature 最优的特征列
    """
    # -----------majorityCnt的第一种方式 start------------------------------------
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    # 倒叙排列classCount得到一个字典集合,然后取出第一个就是结果(yes/no),即出现次数最多的结果
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    # print 'sortedClassCount:', sortedClassCount
    return sortedClassCount[0][0]
    # -----------majorityCnt的第一种方式 end------------------------------------

    # # -----------majorityCnt的第二种方式 start------------------------------------
    # major_label = Counter(classList).most_common(1)[0]
    # return major_label
    # # -----------majorityCnt的第二种方式 end------------------------------------


def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
    # count() 函数是统计括号中的值在list中出现的次数
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    # 选择最优的列,得到最优列对应的label含义
    bestFeat = chooseBestFeatureToSplit(dataSet)
    # 获取label的名称
    bestFeatLabel = labels[bestFeat]
    # 初始化myTree
    myTree = {bestFeatLabel: {}}
    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
    del(labels[bestFeat])
    # 取出最优列,然后它的branch做分类
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 求出剩余的标签label
        subLabels = labels[:]
        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        # print 'myTree', value, myTree
    return myTree


def classify(inputTree, featLabels, testVec):
    """classify(给输入的节点,进行分类)
    Args:
        inputTree  决策树模型
        featLabels Feature标签对应的名称
        testVec    测试输入的数据
    Returns:
        classLabel 分类的结果值,需要映射label才能知道名称
    """
    # 获取tree的根节点对于的key值
    firstStr = inputTree.keys()[0]
    # 通过key得到根节点对应的value
    secondDict = inputTree[firstStr]
    # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
    featIndex = featLabels.index(firstStr)
    # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    print('+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat)
    # 判断分枝是否结束: 判断valueOfFeat是否是dict类型
    if isinstance(valueOfFeat, dict):
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else:
        classLabel = valueOfFeat
    return classLabel


def storeTree(inputTree, filename):
    import pickle
    # -------------- 第一种方法 start --------------
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()
    # -------------- 第一种方法 end --------------

    # -------------- 第二种方法 start --------------
    with open(filename, 'wb') as fw:
        pickle.dump(inputTree, fw)
    # -------------- 第二种方法 start --------------


def grabTree(filename):
    import pickle
    fr = open(filename,'rb')
    return pickle.load(fr)


def fishTest():
    # 1.创建数据和结果标签
    myDat, labels = createDataSet()
    # print myDat, labels

    # 计算label分类标签的香农熵
    # calcShannonEnt(myDat)

    # # 求第0列 为 1/0的列的数据集【排除第0列】
    # print '1---', splitDataSet(myDat, 0, 1)
    # print '0---', splitDataSet(myDat, 0, 0)

    # # 计算最好的信息增益的列
    # print chooseBestFeatureToSplit(myDat)

    import copy
    myTree = createTree(myDat, copy.deepcopy(labels))
    print(myTree)
    # [1, 1]表示要取的分支上的节点位置,对应的结果值
    print(classify(myTree, labels, [1, 1]))
    
    # 获得树的高度
    print(get_tree_height(myTree))

    # 画图可视化展现
    dtPlot.createPlot(myTree)


def ContactLensesTest():
    """
    Desc:
        预测隐形眼镜的测试代码
    Args:
        none
    Returns:
        none
    """

    # 加载隐形眼镜相关的 文本文件 数据
    fr = open('data/3.DecisionTree/lenses.txt')
    # 解析数据,获得 features 数据
    lenses = [inst.strip().split('\t') for inst in fr.readlines()]
    # 得到数据的对应的 Labels
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
    # 使用上面的创建决策树的代码,构造预测隐形眼镜的决策树
    lensesTree = createTree(lenses, lensesLabels)
    print(lensesTree)
    # 画图可视化展现
    dtPlot.createPlot(lensesTree)
    
    
def get_tree_height(tree):
    """
     Desc:
        递归获得决策树的高度
    Args:
        tree
    Returns:
        树高
    """

    if not isinstance(tree, dict):
        return 1

    child_trees = tree.values()[0].values()

    # 遍历子树, 获得子树的最大高度
    max_height = 0
    for child_tree in child_trees:
        child_tree_height = get_tree_height(child_tree)

        if child_tree_height > max_height:
            max_height = child_tree_height

    return max_height + 1


if __name__ == "__main__":
    fishTest()
    # ContactLensesTest()

参考:

《统计学习方法》

《机器学习实战》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值