通俗理解泰勒公式

本博客只用于自身学习,如有错误,虚心求教!!!

 

在维基百科上的解释

数学中,泰勒公式(英语:Taylor's Formula)是一个用函数在某的信息描述其附近取值的公式。这个公式来自于微积分泰勒定理(Taylor's theorem),泰勒定理描述了一个可微函数,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,这个多项式称为泰勒多项式(Taylor polynomial)。

泰勒公式的初衷是用多项式来近似表示函数在某点周围的情况。比如说,指数函数e^{x}x = 0的附近可以用以下多项式来近似地表示:

                                                           {\textrm  {e}}^{x}\approx 1+x+{\frac  {x^{2}}{2!}}+{\frac  {x^{3}}{3!}}+\cdots +{\frac  {x^{n}}{n!}}.

对于一般的函数,泰勒公式的系数的选择依赖于函数在一点的各阶导数值。这个想法的原由可以由微分的定义开始。微分是函数在一点附近的最佳线性近似:

f(a+h)=f(a)+f^{​{\prime }}(a)h+o(h),其中o(h) 是比h 高阶的无穷小

也就是说f(a+h)\approx f(a)+f^{​{\prime }}(a)h,或f(x)\approx f(a)+f^{​{\prime }}(a)(x-a)


百度百科上的解释

数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

                                                  

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。 


在知乎上看到的几个答案

麦克劳林展开:

                                                   \large f(x) = f(0)+\tfrac{f{}'(0)}{1!}x+\tfrac{f{}''(0)}{2!}x^{2}+...+\tfrac{f^{(n)}(0)}{n!}x^{n}

 

容易看出,实际上就是从0这个点的函数值出发,然后把各阶导数全部加起来。

下面的阶乘不过是为了消掉X本身求导带出的东西而已。

需要注意的是,泰勒公式适用于局部的近似。即,如果知道某点的值,我们可以用泰勒求出该点附近的点的值,如果两个点离得很远,泰勒公式就会产生很大误差。

那么我们想想为什么要把导数全部加起来?导数的意义是什么?我们都知道,在物理的时间-位移函数中,求一阶导数就得到速度,说白了就是位移的变化率;求二阶导就得到了加速度,说白了就是速度(一阶导)的变化率。所以,容易看出,实际上每一阶导数都是上一阶导数的变化率。至此,泰勒公式的含义就很明确了。我们知道一个时点的值比如f(0),然后我们想求f(x),我们只要让函数从f(0)走到f(x)然后考虑过程中的所有变化就可以了。

举例:一个老司机开车(考虑一维的情况)向前行驶,这人开车很任性,一下加速一下减速,完全由着性子来。那么我知道他0时间在a这个位置,请问他2分钟后开到了什么位置呢?

首先直接速度乘以时间,不准确,因为这老司机开车的速度老在变化;那我们考虑速度的变化,即考虑一个加速度,好像比刚才好点,但是还是不准确,因为这老司机一下踩油门一下踩刹车,连加速度都是变化的;好,那我们再考虑加速度的变化……

由此一直考虑下去,如果我们能描述,这个开车的人在这两分钟里,每个时间的速度的变化,加速度的变化……我们就能得到两分钟后他的位置。

即:不论其车开得有多任性,只要我从初始点开始,把这个过程中的车的每一个变化,每一个变化的变化,每一个变化的变化的变化,每一个变化的变化的变化的变化……都考虑到了,就能近似得到最终目标点的情况。而且越往后考虑,得到的结果越精确。

这就是泰勒展开的含义啦。

 

参考:

https://zh.wikipedia.org/wiki/%E6%B3%B0%E5%8B%92%E5%85%AC%E5%BC%8F

https://baike.baidu.com/item/%E6%B3%B0%E5%8B%92%E5%85%AC%E5%BC%8F/7681487?fr=aladdin

https://www.zhihu.com/question/21149770

 

<think>好的,用户之前问过如何将函数1/(1+z²)展开成泰勒级数,现在他们又问泰勒级数是什么。可能需要从基础开始解释泰勒级数的概念,同时结合之前的例子,让他们更容易理解。 首先,用户可能已经通过之前的回答对泰勒级数有了初步接触,但需要系统的定义。我应该先给出泰勒级数的基本定义,说明它是一个用多项式逼近函数的方法,围绕某一点展开。 然后,要区分泰勒级数和麦克劳林级数,因为用户之前的问题是在z=0处展开,也就是麦克劳林级数。需要明确两者的区别,麦克劳林是泰勒在原点的情况。 接下来,需要解释泰勒级数的公式,包括各项系数的由来,即n阶导数除以n!。这里可以结合之前的例子,比如1/(1+z²),其中奇数阶导数为零,偶数阶导数有特定的模式,这样用户可以看到实际应用。 用户可能想知道为什么泰勒级数有效,或者它的应用场景。需要提到它的应用,比如近似计算、解析函数的性质等。同时,收敛性也是一个重点,之前提到过收敛半径,这里可以再次强调,比如在复变函数中收敛半径由奇点决定,比如1/(1+z²)在|z|<1收敛,因为奇点在±i。 可能还需要对比泰勒级数和其他展开方法,比如洛朗级数,但用户现在可能只需要泰勒级数的基本信息。另外,用户可能对余项或误差估计感兴趣,但问题没有明确问这个,可以简要提及,但不过多展开。 要确保语言通俗易懂,避免过于数学化的术语,但又要准确。可能需要用例子辅助解释,比如常见的函数如e^x、sinx的泰勒展开,然后联系到用户之前的问题中的1/(1+z²),这样他们能联系起来。 还要注意用户的学习背景,可能是在学习复变函数或高等数学,所以需要适当调整深度。比如,在复分析中,泰勒级数的收敛圆和奇点的关系很重要,而实分析中可能更关注区间收敛。 最后,总结泰勒级数的重要性和应用,帮助用户形成整体理解。检查是否有遗漏的关键点,比如存在条件(函数需无限可导,解析),或者泰勒级数与幂级数的关系。确保回答结构清晰,步骤分明,符合用户之前接受的回答风格。</think>--- ### **泰勒级数的定义** **泰勒级数**(Taylor series)是一种用无限项多项式来逼近函数的方法,它将一个光滑函数在某一点 $a$ 附近展开为幂级数。具体形式为: $$ f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n, $$ 其中: - $f^{(n)}(a)$ 是函数 $f(z)$ 在 $z=a$ 处的 $n$ 阶导数, - $n!$ 是 $n$ 的阶乘, - $(z-a)^n$ 是 $(z-a)$ 的 $n$ 次幂。 特别地,当 $a=0$ 时,泰勒级数称为**麦克劳林级数**(Maclaurin series)。 --- ### **核心思想** 通过函数在某一点的导数信息,构造一个多项式级数,使得: 1. 该级数在 $z=a$ 附近与函数的值高度吻合, 2. 随着项数增加,逼近精度逐渐提高, 3. 在收敛域内,级数和等于原函数。 --- ### **关键特性** 1. **局部逼近性** 泰勒级数在展开点 $z=a$ 附近最精确,离 $a$ 越远误差可能越大。 2. **唯一性** 如果函数在 $z=a$ 处解析(无限可导且级数收敛),则其泰勒级数是唯一的。 3. **收敛域** 泰勒级数的收敛范围通常是一个以 $a$ 为中心的圆(复变函数)或区间(实变函数),其半径由最近的奇点决定。 **例如**:您之前展开的 $\frac{1}{1+z^2}$ 在 $|z|<1$ 内收敛,因为它在 $z=\pm i$ 处有奇点。 --- ### **经典例子** 1. **指数函数** $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad (|z| < \infty)$,收敛域为整个复平面。 2. **正弦函数** $\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} \quad (|z| < \infty)$. 3. **几何级数** $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad (|z| < 1)$,这正是您之前问题中展开的逆过程。 --- ### **为什么需要泰勒级数?** 1. **近似计算** 用有限项多项式近似复杂函数的值(如计算器计算 $\sin 0.1$)。 2. **分析函数性质** 通过级数项的系数和形式,判断函数的奇偶性、增长速率等。 3. **解微分方程** 将解函数展开为泰勒级数,逐项匹配系数。 4. **复变函数理论** 在复分析中,泰勒展开是研究解析函数的核心工具(如您问题中的 $\frac{1}{1+z^2}$)。 --- ### **注意事项** 1. **收敛性问题** 泰勒级数仅在收敛域内等于原函数,超出范围可能发散。 **例如**:$\frac{1}{1+z^2}$ 的泰勒级数在 $|z| \geq 1$ 时不成立。 2. **函数需解析** 函数必须在展开点无限可导,且余项趋于零(需验证收敛性)。 --- ### **与您之前问题的联系** 在您的问题中,将 $\frac{1}{1+z^2}$ 展开为泰勒级数时: - 利用了**几何级数技巧**(通过变量替换 $r = -z^2$), - 结果 $\sum_{n=0}^{\infty} (-1)^n z^{2n}$ 是典型的麦克劳林级数, - 收敛域 $|z| < 1$ 反映了复平面上奇点 $z = \pm i$ 的影响。 --- ### **总结** 泰勒级数通过“用多项式逼近函数”的思想,将复杂的函数转化为易于操作的级数形式,是数学分析、物理和工程中不可或缺的工具。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值