深度学习经典文献积累

本文回顾了反向传播算法的起源,重点介绍了它在80年代Nature杂志上的首次应用,并详细讲述了卷积神经网络的发展,包括LeCun等人1990年的里程碑式工作和2012年Krizhevsky的ImageNet竞赛推动的复兴。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.反向传播算法(backpropagation)首创文献:David E Rumelhart  等 Learning representations by back-propagating errors. Nature,October,1986.

2.卷积神经网络:(1)20世纪80年代发展起来的第一篇文献:Le Cun等,Handwritten digit recognition with a back-propagation network. Proc Advances in Neural Information Processing Systems,1990:396-404

                      (2)  从2012年开始CNN戏剧性的恢复了活力:Krizhevsky,Alex. ImageNet Classification with Deep Convolutional Neural Networks,17 November,2013

3.

 

4.

 

Enable Ginger Cannot connect to Ginger Check your internet connection
or reload the browserDisable in this text fieldRephraseRephrase current sentence 1Edit in Ginger×
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

舞动的白杨

客官,可否打赏UP主喝杯咖啡?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值