记录学习过程。
什么是高精度运算:
我们对一些数值的运算中可能会遇到这样的问题,运算数或者运算结果太大超出了int型甚至long long型的表示范围,这时我们需要手动按数位进行四则混合运算,也就是进行“高精度运算”。
高精度计算的基本步骤:
- 数据的接收:使用字符串进行需要运算的数据的接收;
- 数据的存储:获取字符串有效长度将这串数字存入整型数组中,字符串下标高下标(存放低数位)存入整型数组低下标;
- 数据的处理:按照对应法则进行运算;
- 数据输出:按照高下标(对应高数位)至低下标(对应低数位)进行输出,除法运算结果不一样,它是从低下标(对应高数位)至高下标(对应低数位)输出。
一、高精度加法:
和小学数学“列竖式”加法的过程相似,将两个数组进行从低位向高位的逐位相加、进位、求和。高精度加法就是在计算机内模拟这个运算过程。
// 高精加模板练习-注释版 自用
#include <iostream> // 标准输入输出头文件
#include <cstring> // 字符串头文件
using namespace std;
// 分别将要存放两个加数与结果,将它们定义在全局变量的位置可自动初始化为0
int a[1001], b[1001], c[1001];
int main(){
// 从控制台获取两个加数的值放进字符串中
string s1, s2;
cin >> s1 >> s2;
// 获取字符串的有效长度(不包括末尾'\0')
int L1 = s1.size();
int L2 = s2.size();
// 将字符串内容放进整型数组
// 整型数组低下标存放的是加数低位(对应字符串下标高位),还要将char转换为int
for(int i = 0; i < L1; i++) a[i] = s1[L1 - 1 - i] - '0';
for(int i = 0; i < L2; i++) b[i] = s2[L2 - 1 - i] - '0';
// 加法运算
int L = L1 > L2 ? L1 : L2; // 获取两加数中最大长度作为循环长度
for(int i = 0; i < L; i++){
c[i] += a[i] + b[i]; // 当前数位值等于之前运算的进位加当前两加数数位的和
if(c[i] >= 10){