《Leetcode》70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

思路:

1、题目分析

有多少方法可以爬到楼顶,那第n层有多少方法一定和第n-1层有关系。所以不用多说动态规划。

2、解题分析

  • 如果楼层小于等于2直接返回;1层返回1,2层返回2(跨一步+两小步)
  • 如果大于3层就可采用动态规划的方法解决了,我们用 f(x) 表示爬到第 x 级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶(往后退一步跨两步),所以我们可以列出如下式子:f(x)=f(x−1)+f(x−2)
    • 当前的状态和上个状态和上上个状态都有关系,状态转移方程列出来了题目就已经解决了
    • 当然动态规划需要一个数组就存储这个状态dp[0]~dp[n-1].
      • 不优化:直接用数组存储时间复杂度O(n)
      • 优化:利用滚动数组思想,只和x-1和x-2状态有关;所以利用这样等价转换:a,b=b,a+b。完成空间复杂度的降低

代码如下:

class Solution:
    def climbStairs(self, n: int) -> int:

        #动态规划
        dp=[0 for i in range(n)]
        if n==2:
            return 2
        if n==1:
            return 1
        dp[0]=1
        dp[1]=2
        for i in range(2,n):
            dp[i] = dp[i-1]+dp[i-2]
        return dp[-1]

        #降低空间复杂度,结果只和前两个状态有关
        a,b=1,2
        for i in range(2,n):
            a,b = b,a+b
        
        return b

总结:动态规划的一个简单题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值