机器学习——吴恩达第1~3周总结(线性逻辑回归)

机器学习主要的目的是一种数学建模,利用已有的数据,去拟合一个规则的函数,从而来大概率的去预测未来的数据。

 

我主要把,如何利用建立这样的方程呢??代码的实现解释给简要的梳理。

1、监督学习(Supervised Learning)

定义:在已有的数据上进行训练。

分类:回归问题/逻辑回归问题(例如:房间结果预测是回归的、判断邮件是否为垃圾邮件为逻辑回归)

这里补充一句:回归指的是连续值,逻辑回归是离散值。




2、回归问题(房间预测)

写成向量形式:h_{\Theta }(x) = \Theta ^{T}X

回归问题中,利用假设的值和实际已有的y结果比较,得到误差函数。这里利用差的平方,可以消除负号的影响。

代价函数:

                

我们的目标是找到min(J),所以我们用梯度下降算法来实现求这个最小值。

2.1 梯度下降算法:

后面的和累加,可以写成矩阵形式:

通过不断刷新theta值,求得代价函数J的最小值。

2.2 特征放缩

有的时候我们的数据过大,会导致在使用梯度下降算法时候很难收敛,或者收敛很慢。我们利用特征方缩使得训练的值小的区间。

2.3 学习率选择

在每次梯度下降,迭代的时候会受学习率a影响,a太小,迭代次数多,收敛慢;a太大会错过局部的收敛点。

2.4 正规方程

相对于梯度下降算法求代价函数J的最小值,我们还可以利用正规方程去求J的最下值。

对J求导:

解:

利用微分直接求。

2.5 梯度下降和正规的比较

对于正规解法,会涉及到矩阵的可逆。当矩阵不可逆,我们又要用正规解法该如何???【现实问题中不可逆情况很少出现】

可以通过删除多余的特征值来解决。




3、逻辑回归(Logistic Regression)【邮件是否为垃圾邮件】

3.1 sigmoid function

         

3.2 判定边界

我们的假设函数,在处理数据的基础上在带入sigmoid函数,得到在0~1之间的值。

代价函数:

      

梯度算法求J的最小值

特征方缩依然是必要的

3.3 高级优化

调用高级优化函数fminunc 无约束最小化。




4 正则化

我们在利用梯度下降的时候会遇到一些over-fit的问题,所以我们要正则化技术。所谓的过拟合是指过分依赖原始数据,得到的函数能和原始数据完美拟合但是却失去了预测功能。

从假设函数来看,我们的X次数越高,对应的拟合越好,正则化就是要把这些高次的X给丢弃,得到适合的函数。

正则化代价函数:

lamda是正则化参数,当lamda过大,就会把参数过下化,造成欠拟合;相反如果过小,就会造成theta值为0,得到一条直线,所以合适的lamda选择很重要。




在前面介绍完,基本的回归和逻辑回归,简单介绍下正则化的回归和逻辑回归

4.1 正则化线性回归

正则化线性回归cost function:

梯度下降变化

我们可以看到,正则化的线性回归,是对原有的theta额外减少一个值。


正则线性回归

4.2 正则化的逻辑回归

对于逻辑回归我们用两种算法,一种是梯度下降,一种是更高级的优化算法。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值