LeetCode 368. 最大整除子集(动态规划)

本文介绍了一种算法,用于从无重复正整数集合中找出最大整除子集,子集中任意两个元素都能整除对方。通过示例展示了算法的具体实现与效果。

题目描述

给出一个由无重复的正整数组成的集合,找出其中最大的整除子集,子集中任意一对 (Si,Sj) 都要满足:Si % Sj = 0 或 Sj % Si = 0。
如果有多个目标子集,返回其中任何一个均可。

示例 1:
输入: [1,2,3]
输出: [1,2] (当然, [1,3] 也正确)
示例 2:
输入: [1,2,4,8]
输出: [1,2,4,8]

思路

详见链接

代码

class Solution:
	def largestDivisibleSubset(self,nums):
		nums = sorted(nums)
		dp = [[x] for x in nums]
		maxseq = []
		for i in range(len(nums)):
			for j in range(i):
				if nums[i]%nums[j] == 0 and len(dp[j])+1 > len(dp[i]):
					dp[i] = dp[j] + nums[i:i+1]
			if len(dp[i])>len(maxseq):
				maxseq = dp[i]
		return maxseq
test = Solution()
test.largestDivisibleSubset([1,2,3])				

效果

在这里插入图片描述

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值