第一章
Jordan标准型、几何重数、代数重数、四个基本子空间、Kronecker积
第二章
算子范数、矩阵范数、向量范数之间的联系:相容性
范数定义三条件:正定齐次三角不等式
三个重要不等式考试不会考
第三章
单纯&正规矩阵
奇异值分解———>工程应用,考试不会涉及证明和应用奇异值分解
Schur———>理论证明
最大秩分解每年必考5分左右
第四章
盖尔圆、Rayleight商
第五章
矩阵函数的泰勒展开、敛散性的充要条件、求矩阵函数的三种方法
第六章
第六章没拿到ppt,简单文字说一下考点
广义逆矩阵的四个定义AGA=A、GAG=G、(AG)H=AG、(GA)H=GA 熟练掌握
A-、A-r、A+区别与联系?别弄混
A、AA-、AA-r、AA+之间的列空间关系,秩关系,书本上的证明要掌握
A+的计算:先求最大值分解,然后用左右逆求出具体的
Ax=b的通解公式背下来