矩阵理论

1、函数对向量的微分

\quad 定义多元函数 f ( x ) = f ( x 1 , x 2 , . . , x n ) f(x)=f(x_1, x_2, .., x_n) f(x)=f(x1,x2,..,xn), x ∈ x\in x R n R^n Rn,称列向量
( ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , ⋯   , ∂ f ( x ) ∂ x n ) T (\dfrac{\partial f(x)}{\partial x_1}, \dfrac{\partial f(x)}{\partial x_2}, \cdots, \dfrac{\partial f(x)}{\partial x_n} )^T (x1f(x),x2f(x),,xnf(x))T

为函数 f ( x ) f(x) f(x)对向量 x x x的微分或梯度,记为 d f ( x ) d x \dfrac{df(x)}{dx} dxdf(x) ∇ x f ( x ) \nabla_xf(x) xf(x),也记为 g r a d   f ( x ) grad\,f(x) gradf(x) ∇ f ( x ) \nabla f(x) f(x)

\quad (1) f ( x ) = A x f(x)=Ax f(x)=Ax,则 ∇ f ( x ) = A T \nabla f(x)=A^T f(x)=AT,下式中 α i \alpha_i αi列向量
f ( x ) = ( α 1 , α 2 , ⋯   , α n ) ( x 1 , x 2 , ⋯   , x n ) T = α 1 x 1 + α 2 x 2 + ⋯ + α n x n ∇ f ( x ) = ( α 1 , α 2 , ⋯   , α n ) T = A T \begin{aligned} &f(x)=(\alpha_1,\alpha_2,\cdots,\alpha_n)(x_1,x_2,\cdots,x_n)^T =\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_nx_n \\\\ & \nabla f(x)=(\alpha_1,\alpha_2,\cdots,\alpha_n)^T=A^T \end{aligned} f(x)=(α1,α2,,αn)(x1,x2,,xn)T=α1x1+α2x2++αnxnf(x)=(α1,α2,,αn)T=AT
\quad (2) f ( x ) = x T A f(x)=x^TA f(x)=xTA,则 ∇ f ( x ) = A \nabla f(x)=A f(x)=A,下式中 α i \alpha_i αi行向量
f ( x ) = ( x 1 , x 2 , ⋯   , x n ) ( α 1 , α 2 , ⋯   , α n ) T = α 1 x 1 + α 2 x 2 + ⋯ + α n x n ∇ f ( x ) = ( α 1 , α 2 , ⋯   , α n ) T = A \begin{aligned} &f(x)=(x_1,x_2,\cdots,x_n)(\alpha_1,\alpha_2,\cdots,\alpha_n)^T =\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_nx_n \\\\ &\nabla f(x)=(\alpha_1,\alpha_2,\cdots,\alpha_n)^T=A \end{aligned} f(x)=(x1,x2,,xn)(α1,α2,,αn)T=α1x1+α2x2++αnxnf(x)=(α1,α2,,αn)T=A
\quad (3) f ( x ) = y T A x f(x)=y^TAx f(x)=yTAx,则 ∇ f ( x ) = A T y \nabla f(x)=A^Ty f(x)=ATy

\quad (4) f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,则 ∇ f ( x ) = ( A T + A ) x \nabla f(x)=(A^T+A)x f(x)=(AT+A)x

\quad\quad\quad 方法一:
f ( x ) = ( x 1 x 2 ⋯ x n ) ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 x 2 ⋮ x n ) = ( ∑ i = 1 n x i a i 1 , ∑ i = 1 n x i a i 1 , ⋯   , ∑ i = 1 n x i a i 1 ) ( x 1 , x 2 , ⋯   , x n T ) = ∑ j = 1 n ∑ i = 1 n x i a i j x j ∇ f ( x ) = ( A + A T ) x \begin{aligned} & \begin{aligned} f(x)&= \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \\&= (\sum_{i=1}^n x_ia_{i1},\sum_{i=1}^n x_ia_{i1},\cdots,\sum_{i=1}^n x_ia_{i1}) (x_1 ,x_2,\cdots,x_n^T)\\ &=\sum_{j=1}^n\sum_{i=1}^n x_i a_{ij} x_j \end{aligned} \\ &\nabla f(x)=(A+A^T)x \end{aligned} f(x)=(x1x2xn)a11a21an1a12a22an2a1na2nannx1x2xn=(i=1nxiai1,i=1nxiai1,,i=1nxiai1)(x1,x2,,xnT)=j=1ni=1nxiaijxjf(x)=(A+AT)x

\quad\quad\quad 方法二:
∇ f ( x ) = d x T A x d x = ( d x T ) A x d x + x T A d x d x = ( A + A T ) x \nabla f(x)=\frac{dx^TAx}{dx}=\frac{(dx^T)Ax}{dx}+\frac{x^TAdx}{dx}=(A+A^T)x f(x)=dxdxTAx=dx(dxT)Ax+dxxTAdx=(A+AT)x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值