一、文献梳理
1、文献背景
回顾目标检测的发展历程,在基于现有深度学习方法的基础上,还要提升检测精度的话,其中两个途径就是更好的特征提取网络和增加上下文信息,尤其对小物体检测而言更是如此。DSSD是SSD算法改进分支中最为著名的算法,它对要解决SSD算法在对小目标不够鲁棒的问题。
2、研究成果
1)模型意义
- 把SSD的基准网络从VGG换成了Resnet-101,增强了特征提取能力;
- 使用反卷积层(deconvolution layer )增加了大量上下文信息。
2)实验及其结果
DSSD以513 * 513的图片输入,在VOC2007上的mAP是81.5%,而SSD为80.6%,在COCO数据集上mAP也达到了33.2%,均高于R-FCN;FPS为5.5(batch_size=1)