文献精读——(第十六篇)DSSD

一、文献梳理

1、文献背景

回顾目标检测的发展历程,在基于现有深度学习方法的基础上,还要提升检测精度的话,其中两个途径就是更好的特征提取网络增加上下文信息,尤其对小物体检测而言更是如此。DSSD是SSD算法改进分支中最为著名的算法,它对要解决SSD算法在对小目标不够鲁棒的问题。

2、研究成果

1)模型意义

  • 把SSD的基准网络从VGG换成了Resnet-101,增强了特征提取能力;
  • 使用反卷积层(deconvolution layer )增加了大量上下文信息。

2)实验及其结果

DSSD以513 * 513的图片输入,在VOC2007上的mAP是81.5%,而SSD为80.6%,在COCO数据集上mAP也达到了33.2%,均高于R-FCN;FPS为5.5(batch_size=1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值