论文阅读笔记 | 三维目标检测——3DSSD

3DSSD通过去除上采样层和修正阶段,优化了3D检测网络,降低了推理时间。它采用特征最远点采样和距离最远点采样结合的方式,提高了前景点的召回率,并引入了3D中心性来辅助正负样本的选择。实验结果显示,3DSSD在保持高性能的同时,比同类方法更快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


如有错误,恳请指出。



paper:《3DSSD: Point-based 3D Single Stage Object Detector》

1. 背景

两阶段的3d检测网络一般包含upsample layer进行特征回传进一步提取全局point-wise特征,以及需要一个修正阶段(refinement stage)来对候选框进行微调,这两个步骤极大的耗费时间,同时让网络结构变得复杂。3D-SSD的目的就是为了进一步减少推理时间,抛弃这种PF layers以及refinement stage,只利用backbone进行下采样的特征提取来完成检测任务。此外,作为one-stage的检测算法,采用anchor-free+centerness的方式,3D-SSD极大的简化了检测算法。


2. 网络结构

网络结构图如下:
在这里插入图片描述

2.1 特征提取

在之前的工作中,由于不断地采用距离最远点采样来分组提

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值