2.3.3 TensorFlow 占位符 tf.placeholder

《TensorFlow 与卷积神经网络 (从算法到入门)》学习笔记


tf.placeholder(
    dtype,          # 占位符数据类型
    shape=None,     # 占位符的shape
    name=None       # 占位符的名称
)

tf.placeholder() 既可以看成常量又可以看成变量,是因为在将数据填入到占位符后,其值在图中就不能再做修改(即不能通过asign等函数修改值),但是在图之外又可以不断传入不同的值,比如在训练的时候,可以向图中不断传入不同的图片数据。

import tensorflow as tf

B = [[1, 1],
     [1, 1],
     [1, 1]]

A_tf = tf.placeholder(dtype=tf.float32, shape=[2, 3])
B_tf = tf.constant(B, dtype=tf.float32, shape=[3, 2])
C_tf = tf.matmul(A_tf, B_tf)

with tf.Session() as sess:
    A1 = [[1, 2, 3], [1, 2, 3]]
    A2 = [[4, 5, 6], [4, 5, 6]]
    A_list = [A1, A2]
    for A in A_list:
        C = sess.run(C_tf, feed_dict={A_tf: A})
        print('\nC value:', C)


# 输出为:
# C value: [[6 6]
#           [6 6]]
# 
# C value: [[15 15]
#           [15 15]]

feed_dict参数是一个字典对象,所有占位符的值都可以通过 feed_dict 参数传入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Enzo 想砸电脑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值