朴素贝叶斯学习笔记原理部分(NaiveBayesianModel)

一、朴素贝叶斯的简单介绍
朴素贝叶斯算法是有监督学习算法,能够解决如客户是否流失、是否值得投资等二分类问题,也能够解决如信用等级评定、新闻种类评定等多分类问题。
基于朴素贝叶斯的分类方法有如下的优缺点以及适用的数据类型:
优点:在数据较少的情况下仍然有效,可以处理多分类问题。而且简单易懂、学习效率高,在某些领域的分类问题中能够与决策树和神经网络相媲美。
缺点:对于输入数据的准备方式较为敏感,该算法是建立在以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。
适用数据类型:标称型数据(标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类))
这里写图片描述
二、朴素贝叶斯理论
朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。
1 贝叶斯决策理论(机器学习实战里面的)
假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示:
这里写图片描述
我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

如果p1(x,y) > p2(x,y),那么类别为1
如果p1(x,y) < p2(x,y),那么类别为2
也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。已经了解了贝叶斯决策理论的核心思想,那么接下来,就是学习如何计算p1和p2概率。
2 条件概率
在学习计算p1和p2概率之前,我们需要了解什么是条件概率(Condittional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。
这里写图片描述
根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。
这里写图片描述
因此,
这里写图片描述
同理可得,
这里写图片描述
即:
这里写图片描述
所以,
这里写图片描述
这就是条件概率的计算公式。
3 全概率公式
除了条件概率以外,在计算p1和p2的时候,还要用到全概率公式,因此,这里继续推导全概率公式。
假定样本空间S,是两个事件A与A’的和。
这里写图片描述
上图中,红色部分是事件A,绿色部分是事件A’,它们共同构成了样本空间S。
在这种情况下,事件B可以划分成两个部分。
这里写图片描述
即:
这里写图片描述
在上一节的推导当中,我们已知:
这里写图片描述
所以,
这里写图片描述
这就是全概率公式。它的含义是,如果A和A’构成样本空间的一个划分,那么事件B的概率,就等于A和A’的概率分别乘以B对这两个事件的条件概率之和。
将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:
这里写图片描述
4 贝叶斯推断
对条件概率公式进行变形,可以得到如下形式:
这里写图片描述
我们把P(A)称为”先验概率”(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。
P(A|B)称为”后验概率”(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。
P(B|A)/P(B)称为”可能性函数”(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。
所以,条件概率可以理解成下面的式子:后验概率 = 先验概率 x 调整因子
这就是贝叶斯推断的含义。我们先预估一个”先验概率”,然后加入实验结果,看这个实验到底是增强还是削弱了”先验概率”,由此得到更接近事实的”后验概率”。

在这里,如果”可能性函数”P(B|A)/P(B)>1,意味着”先验概率”被增强,事件A的发生的可能性变大;如果”可能性函数”=1,意味着B事件无助于判断事件A的可能性;如果”可能性函数”<1,意味着”先验概率”被削弱,事件A的可能性变小。

为了加深对贝叶斯推断的理解,我们一个例子。
这里写图片描述
两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做”先验概率”,即没有做实验之前,来自一号碗的概率是0.5。

再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做”后验概率”,即在E事件发生之后,对P(H1)的修正。

根据条件概率公式,得到:
这里写图片描述
已知,P(H1)等于0.5,P(E|H1)为一号碗中取出水果糖的概率,等于30÷(30+10)=0.75,那么求出P(E)就可以得到答案。根据全概率公式,
这里写图片描述
所以,
这里写图片描述
将数字代入原方程,得到
这里写图片描述
这表明,来自一号碗的概率是0.6。也就是说,取出水果糖之后,H1事件的可能性得到了增强。

同时再思考一个问题,在使用该算法的时候,如果不需要知道具体的类别概率,即上面P(H1|E)=0.6,只需要知道所属类别,即来自一号碗,我们有必要计算P(E)这个全概率吗?要知道我们只需要比较 P(H1|E)和P(H2|E)的大小,找到那个最大的概率就可以。既然如此,两者的分母都是相同的,那我们只需要比较分子即可。即比较P(E|H1)P(H1)和P(E|H2)P(H2)的大小,所以为了减少计算量,全概率公式在实际编程中可以不使用。
5 朴素贝叶斯推断
理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件个概率分布做了条件独立性的假设。 比如下面的公式,假设有n个特征:
这里写图片描述
由于每个特征都是独立的,我们可以进一步拆分公式
这里写图片描述
这样我们就可以进行计算了。如果有些迷糊,让我们从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。
某个医院早上来了六个门诊的病人,他们的情况如下表所示:
这里写图片描述
现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:
这里写图片描述
可得:
这里写图片描述
根据朴素贝叶斯条件独立性的假设可知,”打喷嚏”和”建筑工人”这两个特征是独立的,因此,上面的等式就变成了
这里写图片描述
这里可以计算:
这里写图片描述
因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

同样,在编程的时候,如果不需要求出所属类别的具体概率,P(打喷嚏) = 0.5和P(建筑工人) = 0.33的概率是可以不用求的。

参考的链接:http://blog.csdn.net/c406495762/article/details/77341116
http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值